Berezka7km.ru

Березка 7км
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Действие на организм электрического тока Особенности повреждающего действия тока

Действие на организм электрического тока Особенности повреждающего действия тока:

– вызывает биологический эффект, химическое, механическое, термическое повреждение.

Механизм действия тока

При прохождении через тело человека ток оказывает специфическое и неспецифическое действие.

Специфическое действие проявляется при прохождении тока через тело; возникающие эффекты обусловлены перераспределением ионов.

Биологическое действиезаключается в воз­буждение скелетной и гладкой мускулатуры, железистых тканей, нервных рецепторов и проводников.

Проявления биологического действия тока:

тонические су­дороги скелетных мышц → остановка дыхания, от­рывной перелом, вывих конечностей, спазму голосовых связок;

то­ническое сокращение гладких мышц → повышением кровяного давления, непроизвольное мочеиспускание, дефекация;

– фиб­рилляцию желудочков сердца → смерть;

воздействие на нервную систему, эндокринные железы → выброс в большом количестве катехоламинов (адреналина, норадреналина), изменение соматических и висцеральных функ­ции организма;

интоксикация организма про­дуктами асептического распада тканей;

Изменения количественного и качественного состава форменных элементов крови:

повышенный распад эритроцитов, иногда гемоглобинурия;

стойкое снижение фагоцитарной активности лейко­цитов.

Биохимические изменения крови: повы­шение остаточного азота, глюкозы, билирубина, понижение резервной щелоч­ности крови, изменение альбумино-глобулинового коэффициента, соотно­шения между калием и кальцием, нарушение свертываемости крови.

Электрохимическое действиетока включает: электролиз; поля­ризацию клеточных мембран; накопление в одних участках положительно заряженных ионов, возникновение кислой реакции и коагуляция белков коагуляционный некроз; на других скапливаются отрицательно заряженные ионы, возникает щелочная реак­ция, происходит набухание коллоидов, возникает колликвационный некроз; передвижение белковых молекул; накопление токсических продуктов электролиза; газы переходят из растворенного, в газообразное состояние; металлизация кожи при соприкосновении тела с металлами.

Тепловое действиеобусловлено превращением электрической энергии в тепловую, выделением большого количества тепла в тканях.

Проявления теплового действия тока:

«жемчужные бусы» возникают при рас­плавлении костного вещества с выделением фосфорнокислого кальция;

«знаки тока» — участки коагулированного эпидермиса, имеющие круглую или овальную форму, серо-белого цвета, твердой консистенции, окаймленные валикообразным возвышением, с западением в центре;

ветвистый ри­сунок красного цвета обусловлен параличом кровеносных сосудов.

Такие изменения наблюдаются на коже, если температура в точке прохождения тока не превышает 120°С. Ожоги формируются при более высокой температуре, про­хождении тока через ткани; возможно повреждение подлежащих тканей, вплоть до обугливания.

Механическое действиеобусловлено значительной тепловой и механической энергией токов высокого напряжения. Совместное действие тепловой и механической энергии оказывает взрывоподобный эффект.Проявления:

отрыв частей тела;

образование резаных ран;

переломы костей, травмы черепа.

Неспецифическое действие— обусловлено другими видами энергии, в которые преобразуется электричество вне орга­низма (пламя и излучение вольтовой дуги, световые, ультрафиолетовое, инфракрасное излучение).

Проявления неспецифического действия тока:

ожог ро­говицы, конъюнктивы, атрофия зрительного нерва;

возникающий при взрыве сильный звук повреждает ор­ган слуха;

падения с высоты на землю обуславливает переломы костей, вывихи, ушибы тела и повреждения внутренних органов;

иногда во время электротравмы возникает отравление газами.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Самостоятельная работа по физике Электрический ток в металлах. Действия электрического тока. Направление электрического тока для 8 класса

Самостоятельная работа по физике Электрический ток в металлах. Действия электрического тока. Направление электрического тока для 8 класса

Самостоятельная работа по физике Электрический ток в металлах. Действия электрического тока. Направление электрического тока для 8 класса с ответами. Самостоятельная работа включает 2 варианта, в каждом по 5 заданий.

Вариант 1

1. Какие частицы создают электрический ток в металлах? Что находится в узлах кристаллической решётки?

2. Какое действие тока мы используем, включая вентилятор? Зачем нам нужен этот прибор?

3. Какой существует самый простой способ определить, заряжена ли батарейка?

4. Как можно использовать магнитное действие тока для сортировки металлолома и перемещения стальных деталей?

5. Обычная лампа накаливания позволяет продемонстрировать два действия электрического тока. Какие?

Вариант 2

1. Внутри стены проложена электропроводка. Как, не вскрывая стену, можно обнаружить расположение проводов?

2. Какое действие тока позволяет покрывать золотом ювелирные изделия?

3. В коробке перемешаны медные винты и железные шурупы. Какое действие тока позволит их рассортировать?

4. Какое преимущество имеют лампы дневного света перед лампами накаливания?

5. Какое направление тока условно принято в физике? В чем заключается противоречие с действительным движением заряженных частиц?

Ответы на самостоятельную работа по физике Электрический ток в металлах. Действия электрического тока. Направление электрического тока для 8 класса
Вариант 1
1. Электрический ток в металлах создают электроны. В узлах кристаллической решетки находятся положительные ионы и атомы.
2. Магнитное действие тока. Вентилятор используется для охлаждения воздуха в окружающем пространстве.
3. Поднять батарейку на сантиметр от поверхности, если батарейку при падении не упала, то она заряжена, если батарейка упала, то батарейка разряжена.
4. Можно создать электромагнит, который будет притягивать к себе стальные детали. После сортировки, изменяя силу тока в магните, можно отделить материалы, в которых большое содержание магнитных веществ, от материалов, у которых это содержание не велико.
5. Лампа демонстрирует тепловые и световые действия тока.
Вариант 2
1. С помощью магнитной стрелки, если поднести ее к стене, в том месте где стрелка начнет отклонятся находятся провода.
2. Химическое действие тока в процессе электролиза.
3. Собрать магнит, на медь магнитное поле действовать не будет, а железные шурупы притянутся к нему.
4. Лампы дневного света потребляют меньше энергии. Энергосберегающие лампы выделяют меньше тепла, а светят ярче. Быстро разгораются.
5. В физике принято считать, что за направление тока берут направление движения положительных частиц, то есть от положительного полюса источника к отрицательному. Противоречие в том, что считается что ток создаются отрицательно заряженные частицы — электроны.

Читайте так же:
Тепловое действие тока это явление

Магнитные действия электрического тока

Магнитные действия электрического тока

Ранее мы говорили о причинах возникновения и природе магнитно-силовых линий (МСЛ), возникающих вблизи постоянных магнитов и проводников с током. В предыдущей статье я высказал гипотезу, о том, что магнитное поле вблизи постоянного магнита или проводника с током представляет собой интерференционную картину из МСЛ различной интенсивности. В термин МСЛ я вкладываю определенный физический смысл. Это не просто геометрические линии, а часть сложной структуры магнитного поля, состоящая, в свою очередь, из микроскопических волн, обладающих магнитными свойствами. При воздействии магнитного поля постоянного магнита на кусок железа или на железные опилки это поле является внешним (ВМП), по отношению к куску железа или железным опилкам. ВМП вначале индуцирует собственное магнитное поле (СМП) в куске железа или в железных опилках, а затем уже взаимодействует с этим СМП, посредством их МСЛ.

Аналогично это касается и проводников с током. Пока в проводниках замкнутой цепи есть ток (а значит, есть СМП вокруг проводников), ВМП взаимодействует с СМП проводников посредством их МСЛ. Когда в проводнике нет тока, а значит, и нет МСЛ вокруг проводника, ВМП не действует на сам проводник, хотя его МСЛ пронизывают микроструктуру проводника.

В этой статье поговорим о взаимодействии магнитов и проводников с током посредством МСЛ.

Вспомним, что известно об этом из научных публикаций. Как уже было сказано ранее, Г.Эрстед в 1820 году экспериментально продемонстрировал взаимодействие магнита и проводника с током. Поведение магнитной стрелки вблизи проводника с постоянным током говорило о том, что вокруг этого проводника находится магнитное поле. Впоследствии была установлена тесная связь магнитного поля с током. Обобщая свои опыты, Эрстед показал, что наличие тока в проводниках замкнутой цепи, какова бы не была их природа, всегда влечет за собой образование МСЛ магнитного поля вокруг проводников этой цепи. Именно взаимодействие МСЛ проводника с МСЛ магнитной стрелки заставляет ее поворачиваться одним из своих полюсов к проводнику с током.

В 1821 году французский ученый А.Ампер установил взаимосвязь электричества и магнетизма в случае прохождения по цепи электрического тока и отсутствия такой взаимосвязи у статического электричества.

Проводник над магнитом

Чтобы проверить является ли указанное взаимодействие МСЛ обоюдным, т.е. действует ли магнит на проводник с током, был проведен следующий опыт (рис.1). Над неподвижным постоянным магнитом подвешивали проводник с постоянным током. Оказалось, что проводник с током ведет себя аналогично магнитной стрелке.

Полосовой магнит и проводник с током

Интересен опыт с гибким проводником, который расположен в непосредственной близости к параллельно полосовому магниту. Когда в проводнике появлялся ток, то он обвивался вокруг полосового магнита (рис.2). Это говорило о том, что вокруг каждого участка проводника с током появляются МСЛ, которые взаимодействуют с МСЛ полосового магнита.

Такой же вывод был сделан и Д.Араго, который в своем опыте обратил внимание на то, что если погрузить изолированный провод, по которому идет ток, в металлические опилки, то опилки пристают к нему по всей длине как к магниту. При выключении тока опилки отпадают.

Читайте так же:
Тепловое поражение электрическим током ведет

Аналогичные взаимодействия были установлены между двумя, находящимися вблизи друг от друга, проводниками с постоянным током. В опыте (рис.3) два параллельных проводника установлены на небольшом расстоянии друг от друга. Эти проводники притягивались или отталкивались в зависимости от его направления. В этих и других опытах было показано, что магнитное действие электрического тока аналогично взаимодействию двух магнитов.

Рассмотренные нами опыты по взаимодействию магнитных полей показывают, что все взаимодействия и в случае с постоянными магнитами, и между постоянными магнитами и проводниками с током, а также двумя проводниками с током между собой сводятся к взаимодействию магнитных полей посредством их МСЛ. С учетом того, что на практике большое количество технических устройств создано на основе взаимодействия магнитных полей, в частности, на основе взаимодействия магнитных полей и проводников с током, следует привести некоторые опыты, которые понадобятся нам позднее для объяснения некоторых явлений в этой области.

Подковообразный магнит и проводник

Рассмотрим следующий опыт по взаимодействию магнитного поля и проводника с током. В магнитном поле подковообразного магнита расположен прямолинейный участок проводника с током. (рис.4). Изменяя направление тока в проводнике, и меняя его расположение относительно направления магнитного поля можно определить направление силы, действующей на проводник. При включении тока (в зависимости от его направления) проводник может втягиваться в магнит или выталкиваться из магнита. При этом магнитное поле действует на проводник с током только тогда, когда он расположен перпендикулярно направлению МСЛ поля. При параллельном расположении проводника и МСЛ поля взаимодействия не происходит.

Химический источник тока

Хими́ческий исто́чник то́ка (аббр. ХИТ) — источник ЭДС, в котором энергия протекающих в нём химических реакций непосредственно превращается в электрическую энергию.

Содержание

История создания [ править | править код ]

Первый химический источник тока был изобретён итальянским учёным Алессандро Вольта в 1800 году. Это был «элемент Вольта» — сосуд с серной кислотой с опущенными в него цинковой и медной пластинками, с проволочными токовыводами. Затем учёный собрал батарею из этих элементов, которая впоследствии была названа «вольтовым столбом». Это изобретение впоследствии использовали другие учёные в своих исследованиях. Так, например, в 1802 году русский академик В. В. Петров сконструировал вольтов столб из 2100 элементов для получения электрической дуги. В 1836 году английский химик Джон Даниель усовершенствовал элемент Вольта, поместив цинковый и медный электроды в раствор серной кислоты. Эта конструкция стала называться «элементом Даниеля».

В 1859 году французский физик Гастон Плантэ изобрёл свинцово-кислотный аккумулятор, поместив скрученную в рулон тонкую свинцовую пластину в серную кислоту. Этот тип элемента и по сей день используется в автомобильных аккумуляторах.

В 1865 году французский химик Ж. Лекланше предложил свой гальванический элемент (элемент Лекланше), состоявший из цинкового стаканчика, заполненного водным раствором хлористого аммония или другой хлористой соли, в который был помещён агломерат из оксида марганца(IV) MnO2 в качестве деполяризатора с угольным токоотводом. Модификация этой конструкции используется до сих пор в солевых батарейках для различных бытовых устройств.

В 1890 году в Нью-Йорке Конрад Хьюберт, иммигрант из России, создаёт первый карманный электрический фонарик. А уже в 1896 году компания National Carbon приступает к массовому производству первых в мире сухих элементов Лекланше «Columbia».

Самый старый, поныне работающий гальванический элемент — серебряно-цинковая батарея, изготовленная в Лондоне в 1840 году. Подключенный к двум таким последовательно соединенным батареям звонок работает и по сей день в Кларендонской лаборатории Оксфорда [1] .

Принцип действия [ править | править код ]

Основу химических источников тока составляют два электрода (положительно заряженный катод, содержащий окислитель, и отрицательно заряженный анод, содержащий восстановитель) контактирующие с электролитом. Между электродами устанавливается разность потенциалов — электродвижущая сила, соответствующая свободной энергии окислительно-восстановительной реакции. Действие химических источников тока основано на протекании при замкнутой внешней цепи пространственно-разделённых процессов: на отрицательном аноде восстановитель окисляется, образующиеся свободные электроны переходят по внешней цепи к положительному катоду, создавая разрядный ток, где они участвуют в реакции восстановления окислителя. Таким образом, поток отрицательно заряженных электронов по внешней цепи идет от анода к катоду, то есть от отрицательного электрода (отрицательного полюса химического источника тока) к положительному. Это соответствует протеканию электрического тока в направлении от положительного полюса к отрицательному, так как направление тока совпадает с направлением движения положительных зарядов в проводнике.

Читайте так же:
Одевание теплоотражательного костюма ток норматив

В современных химических источниках тока используются:

  • в качестве восстановителя (материал анода) — свинец Pb, кадмий Cd, цинк Zn и другие металлы;
  • в качестве окислителя (материал катода) — оксид свинца(IV) PbO2, гидроксооксид никеля NiOOH, оксид марганца(IV) MnO2 и другие;
  • в качестве электролита — растворы щелочей, кислот или солей[2] .

Классификация [ править | править код ]

По возможности или невозможности повторного использования химические источники тока делятся на:

    (первичные ХИТ), которые из-за необратимости протекающих в них реакций невозможно перезарядить; (вторичные ХИТ) — перезаряжаемые гальванические элементы, которые с помощью внешнего источника тока (зарядного устройства) можно перезарядить; (электрохимические генераторы) — устройства, подобные гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне, а продукты реакций удаляются из него, что позволяет ему функционировать непрерывно, пока обеспечивается подача реагентов.

Следует заметить, что деление элементов на гальванические и аккумуляторы до некоторой степени условное, так как некоторые гальванические элементы, например щелочные батарейки, поддаются подзарядке, но эффективность этого процесса крайне низка.

Некоторые виды химических источников тока [ править | править код ]

Гальванические элементы [ править | править код ]

Гальванический элемент — химический источник электрического тока, названный в честь Луиджи Гальвани. Принцип действия гальванического элемента основан на взаимодействии двух металлов через электролит, приводящем к возникновению в замкнутой цепи электрического тока.

См. также Категория: Гальванические элементы.

ТипКатодЭлектролитАнодНапряжение,
В
Литий-железо-дисульфидный элементFeS2Li1,50 — 3,50
Марганцево-цинковый элементMnO2KOHZn1,56
Марганцево-оловянный элементMnO2KOHSn1,65
Марганцево-магниевый элементMnO2MgBr2Mg2,00
Свинцово-цинковый элементPbO2H2SO4Zn2,55
Свинцово-кадмиевый элементPbO2H2SO4Cd2,42
Свинцово-хлорный элементPbO2HClO4Pb1,92
Ртутно-цинковый элементHgOKOHZn1,36
Ртутно-кадмиевый элементHgO2KOHCd1,92
Окисно-ртутно-оловянный элементHgO2KOHSn1,30
Хром-цинковый элементK2Cr2O7H2SO4Zn1,8 — 1,9

Электрические аккумуляторы [ править | править код ]

Электрический аккумулятор — химический источник тока многоразового действия (то есть в отличие от гальванического элемента химические реакции, непосредственно превращаемые в электрическую энергию, многократно обратимы). Электрические аккумуляторы используются для накопления энергии и автономного питания различных устройств.

Топливные элементы [ править | править код ]

Топливный элемент — электрохимическое устройство, подобное гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне — в отличие от ограниченного количества энергии, запасенного в гальваническом элементе или аккумуляторе.

Реферат на тему «Воздействие электрического тока на организм человека и меры защиты от поражения электрическим током в быту и производственной сфере»

Действия электрического тока: тепловое, химическое, магнитное, световое и механическое

Электрический ток в цепи всегда проявляется каким-нибудь своим действием. Это может быть как работа в определенной нагрузке, так и сопутствующее действие тока. Таким образом, по действию тока можно судить о его наличии или отсутствии в данной цепи: если нагрузка работает — ток есть. Если типичное сопутствующее току явление наблюдается — ток в цепи есть, и т. д.
Вообще, электрический ток способен вызывать различные действия: тепловое, химическое, магнитное (электромагнитное), световое или механическое, причем разного рода действия тока зачастую проявляются одновременно. Об этих явлениях и действиях тока и пойдет речь в данной статье.

Тепловое действие электрического тока

При прохождении постоянного или переменного электрического тока по проводнику, проводник нагревается. Такими нагревающимися проводниками в разных условиях и приложениях могут выступать: металлы, электролиты, плазма, расплавы металлов, полупроводники, полуметаллы.

Сварочная дуга

В простейшем случае, если, скажем, через нихромовую проволоку пропустить электрический ток, то она нагреется. Данное явление используется в нагревательных приборах: в электрочайниках, в кипятильниках, в обогревателях, электроплитках и т. д. В электродуговой сварке температура электрической дуги вообще доходит до 7000°С, и металл легко плавится, — это тоже тепловое действие тока.

Постоянный и переменный ток

Ток, даваемый разнообразными батарейками и аккумуляторами, является постоянным. Это означает, что силу тока в такой цепи можно изменять лишь по величине, меняя различными способами её сопротивление, а его направление при этом сохраняется неизменным.

Читайте так же:
Тепловой удар провода это

Но большинство электробытовых приборов потребляют переменный ток, т. е. ток величина и направление которого непрерывно изменяются по определенному закону.

Что такое переменный ток.

Он вырабатывается на электростанциях, а затем через линии высоковольтных передач попадает в наши дома и на предприятия.

В большинстве стран частота изменения направления тока равна 50 Гц, т. е происходит 50 раз в секунду. При этом каждый раз сила тока постепенно нарастает, достигает максимума, затем убывает до 0. Затем этот процесс повторяется, но уже при противоположном направлении тока.

В США все приборы работают на частоте 60 Гц. Интересная ситуация сложилась в Японии. Там на одной трети страны используют переменный ток с частотой в 60 Гц, а на остальной части — 50 Гц.

§11. Постоянный электрический ток

Мы подробно рассмотрели свойства электростатического поля, порождаемого неподвижными электрическими зарядами. При движении электрических зарядов возникает целый ряд новых физических явлений, к изучению которых мы приступаем.
В настоящее время широко известно, что электрические заряды имеют дискретную структуру, то есть носителями зарядов являются элементарные частицы – электроны, протоны и т.д. Однако в большинстве практически значимых случаев эта дискретность зарядов не проявляется, поэтому модель сплошной электрически заряженной среды хорошо описывает явления, связанные с движением заряженных частиц, то есть с электрическим током.

Электрическим током называется направленное движение заряженных частиц

С использованием электрического тока вы хорошо знакомы, так как электрический ток чрезвычайно широко используется в нашей жизни. Не секрет, что наша нынешняя цивилизация в основном базируется на производстве и использовании электрической энергии. Электрическую энергию достаточно просто производить, предавать на большие расстояния, преобразовывать в другие требуемые формы.

Кратко остановимся на возможных проявлениях действия электрического тока.

Тепловое действие

электрического тока проявляется практически во всех случаях протекания тока. Благодаря наличию электрического сопротивления при протекании тока выделяется теплота, количество которой определяется законом Джоуля-Ленца, с которым вы должны быть знакомы. В некоторых случаях выделяемая теплота полезна (в разнообразных электронагревательных приборах), часто выделение теплоты приводит к бесполезным потерям энергии при передаче электроэнергии.

Магнитное действие

тока проявляется в создании магнитного поля, приводящего к появлению взаимодействия между электрическими токами и движущимися заряженными частицами.

Механическое действие

тока используется в разнообразных электродвигателях, преобразующих энергию электрического тока в механическую энергию.

Химическое действие

проявляется в том, что протекающий электрический ток, может инициировать различные химические реакции. Так, например, процесс производства алюминия и ряда других металлов основан на явлении электролиза – реакции разложения расплавов оксидов металлов под действием электрического тока.

Световое действие

электрического тока проявляется в появлении светового излучения при прохождении электрического тока. В некоторых случаях свечение является следствие теплового разогрева (например, в лампочках накаливания), в других движущиеся заряженные частицы непосредственно вызывают появление светового излучения.

В самом названии явления (электрический ток) слышны отголоски старых физических воззрений, когда все электрические свойства приписывались гипотетическое электрической жидкости, заполняющей все тела. Поэтому при описании движения заряженных частиц используется терминология аналогичная используемой при описании движения обычных жидкостей. Указанная аналогия простирается дальше простого совпадения терминов, многие законы движения «электрической жидкости аналогичны законам движения обычных жидкостей, а частично знакомые вам законы постоянного электрического тока по проводам аналогичны законам движения жидкости по трубам. Поэтому настоятельно рекомендуем вам повторить раздел, в котором описаны эти явления – гидродинамику.

Какими явлениями сопровождается электрический ток?

электрический ток

Наличие тока в электроцепи всегда проявляется каким-либо действием. Например, работа при конкретной нагрузке или какое-то сопутствующее явление. Следовательно, именно действие электротока говорит о его присутствии как таковом в той или иной электроцепи. То есть, если работает нагрузка, то ток имеет место быть.

Известно, что электрический ток вызывает различного рода действия. Например, к таковым относятся тепловые, химические, магнитные, механические или световые. При этом различные действия электрического тока способны проявлять себя одновременно. Более подробно о всех проявлениях мы расскажем Вам в данном материале.

Тепловое явление

Известно, что температура проводника повышается при прохождении через него тока. В качестве таких проводников выступают различные металлы или их расплавы, полуметаллы или полупроводники, а также электролиты и плазма. Например, при пропускании через проволоку из нихрома электрического тока происходит ее сильное нагревание. Данное явление используют в приборах нагрева, а именно: в электрических чайниках, кипятильниках, обогревателях и т.п. Электродуговая сварка отличается самой большой температурой, а именно нагрев электродуги может достигать до 7 000 градусов по Цельсию. При такой температуре достигается легкое расплавление металла.

Читайте так же:
Чему равно тепло сила тока

Количество выделяемой теплоты напрямую зависит от того, какое напряжение было приложено к данному участку, а также от электротока и времени его прохождения по цепи.

Для расчета объемов выделяемой теплоты используется или напряжение, или сила тока. При этом необходимо знание показателя сопротивления в электроцепи, поскольку именно оно провоцирует нагрев из-за ограничения тока. Также количество тепла можно определить при помощи тока и напряжения.

Химическое явление

Химическое действие электротока заключается в электролизе ионов в электролите. Анод при электролизе присоединяет к себе анионы, катод – катионы.

Иными словами, во время электролиза на электродах источника тока происходит выделение определенных веществ.

Приведем пример: в кислотный, щелочной или же солевой раствор опускаются два электрода. После пропускается по электроцепи ток, что провоцирует создание положительного заряда на одном из электродов, на другом – отрицательного. Ионы, которые находятся в растворе, откладываются на электроде с иным зарядом.

Химическое действие электротока применяется в промышленности. Так, используя данное явление, осуществляют разложение воды на кислород и водород. Кроме того, при помощи электролиза получают металлы в их чистом виде, а также осуществляют гальваническое покрытие поверхности.

Магнитное явление

Электрический ток в проводнике любого агрегатного состояния создает магнитное поле. Иными словами, проводник при электрическом токе наделяется магнитными свойствами.

Таким образом, если к проводнику, в котором протекает электроток, приблизить магнитную стрелку компаса, то та начнет поворачиваться и займет к проводнику перпендикулярное положение. Если же на сердечник из железа намотать данный проводник и пропустить сквозь него постоянный ток, то данный сердечник примет свойства электромагнита.

Природа магнитного поля всегда заключается в наличии электрического тока. Объясним: движущиеся заряды (заряженные частицы) образуют магнитное поле. При этом токи противоположного направления отталкиваются, а одинакового направления – притягиваются. Данное взаимодействие обосновано магнитным и механическим взаимодействием магнитных полей электротоков. Выходит, что магнитное взаимодействие токов первостепенно.

Магнитное действие применяется в трансформаторах и электромагнитах.

Световое явление

Самый простой пример светового действия – лампа накаливания. В данном источнике света спираль достигает нужной температурной величины посредством проходящего сквозь нее тока до состояния белого каления. Тем самым и излучается свет. В традиционной лампочке накаливания всего лишь пять процентов всей электроэнергии расходуется на свет, остальная же львиная доля преобразуется в тепло.

Более современные аналоги, например, люминесцентные лампы наиболее эффективно преобразуют электроэнергию в свет. То есть, около двадцати процентов всей энергии лежит в основе света. Люминофор принимает УФ-излучение, идущее от разряда, что возникает в ртутных парах или в инертных газах.

Самая эффективная реализация светового действия тока происходит в светодиодных источниках света. Электрический ток, проходя через pn-переход, провоцирует рекомбинацию носителей заряда с излучением фотонов. Лучшими led излучателями света являются прямозонные полупроводники. Изменяя состав данных полупроводников, возможно создание светодиодов для различных световых волн (разной длины и диапазона). Коэффициент полезного действия светодиода достигает 50 процентов.

Механическое явление

Напомним, что вокруг проводника с электрическим током возникает магнитное поле. Все магнитные действия преобразуются в движение. Примером служат электрические двигатели, магнитные подъемные установки, реле и др.

В 1820 году Андре Мари Ампер вывел известный всем «Закон Ампера», который как раз описывает механическое действие одного электротока на другой.

Данный закон гласит, что параллельные проводники с электрическим током одинакового направления испытывают притяжение друг другу, а противоположного направления, наоборот, отталкивание.

Также закон ампера определяет величину силы, с которой магнитное поле воздействует на небольшой отрезок проводника с электротоком. Именно данная сила лежит в основе функционирования электрического двигателя.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector