Berezka7km.ru

Березка 7км
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расшифровки характеристик и выбор автоматических выключателей

Расшифровки характеристик и выбор автоматических выключателей

При выборе автоматического выключателя покупателю нужно определиться с количеством полюсов устройства, номинальным током, типом защитной характеристики и не только. Подбор значения по любому из параметров осуществляется в зависимости от помещения, в которое будет устанавливаться устройство. Специалисты точно знают, что необходимо выбрать. Но как обычному пользователю сделать правильный выбор? Обо всем по порядку.

Назначение и разновидности автоматов

Автоматический выключатель – предохранительное устройство, которое перекрывает поступление тока в проводку при перегрузке в сети и/или коротком замыкании. Это происходит с помощью расцепителя. Он бывает трех видов, от которых зависит прямое назначение выключателя.

Тепловой служит для защиты от перегрузок в сети, представляет собой биметаллическую пластину теплового реле. При превышении значения номинального тока она нагревается, расширяется и выгибается, толкая рычаг, который разрывает соединение.

Второй тип – электромагнитный. Это система из катушки, сердечника и пружины, предназначенная для защиты от короткого замыкания. При резком увеличении силы тока, проходящего через катушку, меняется магнитное поле, это в свою очередь меняет положение сердечника, приводя к сжатию пружины и срабатыванию рычага.

Есть и универсальный вариант — комбинированный. Он объединяет в себе оба вышеописанных механизма, защищая одновременно и от перегрузок, и от скачков напряжения.

По конструкции автоматические выключатели разделяются на несколько разновидностей в зависимости от силы тока, на которую они рассчитаны:

  • воздушный – от 800 до 6300 А;
  • в литом корпусе – от 10 до 2500 А;
  • модульный – от 0,5 до 125 А.

Последний является одним из самых распространенных. При его выборе следует отметить, что он доступен по цене и прост в использовании и монтаже. Применяется в квартирах, частных домах и офисах. Устройства в литом корпусе и воздушные чаще устанавливаются на промышленных предприятиях и имеют более высокую цену.

Есть разделение автоматических выключателей и по времени срабатывания. Это характеристика, которая определяет скорость расцепления. В зависимости от её значения выделяют опять же три типа. Первый – нормальные (0,02-0,1 с), далее идут селективные (до 1 с) и быстродействующие с токоограничивающим эффектом (до 0,05 с). Последние являются особо долговечными и эффективными. Такой автомат срабатывает перед самой перегрузкой, до сильного повышения тока. Для выбора по данному параметру необходимо учесть силу перегрузок, которые могут возникнуть, и их частоту. Чем они выше и чем чаще происходят, тем быстрее устройство должно на них реагировать.

Основные параметры выбора

Номинальный ток. Первая и одна из самых важных характеристик, по которой следует выбирать, основываясь на том, какая предполагается нагрузка на сеть. Чем выше будет номинальный ток у устройства, тем выше будет и порог его отключения. Но не стоит выбирать автомат с «запасом» по данной характеристике, иначе он может не справиться со своей основной задачей – защитой сети от перегрузок. К тому же, чем выше значение данного параметра у аппарата, тем больше его цена. Расчет подходящего значения номинального тока можно провести по следующей формуле I= P/U, где:

I (А) – искомое значение;

P (Ватт) – суммарная потребляемая мощность. Для её вычисление необходимо сложить мощность всех электроприборов в доме и умножить полученное число на коэффициент 0,7. Потребляемая мощность всегда указывается в паспорте электротехники, а также на её корпусе, обычно сзади на специальной наклейке.

U (В) – напряжение сети.

Полученное значение необходимо округлить до ближайшего из стандартного ряда. Основными считаются автоматические выключатели со значением номинального тока 6А, 10А, 16А, 25А, 32А, 40А, 50А, 63А.

Класс (тип расцепления) – этот параметр обозначается латинской буквой и показывает количество раз превышения номинального тока, при котором автоматический выключатель срабатывает.

  • A – 2-3 предназначен для проводки большой протяженности в любых зданиях.
  • B – 3-5 подходит для жилых домов;
  • C – 5-10 для мест, где в сеть подключается много оборудования, например, для промышленного предприятия или частной мастерской.
  • D – 10-20 аналогичен C.

Количество полюсов – эта характеристика связана с фазами сети. Для однофазной применяются однополюсные (в электросетях TN-C, TT) и двухполюсные (в электросетях IT) выключатели, а для трехфазной – трехполюсные (в электросетях TN-C, TT, IT) и четырехполюсные (в электросетях TN-S).

Надеемся, что данная статья поможет Вам в выборе подходящего автомата. Но для установки данного оборудования советуем обратиться к квалифицированному специалисту, чтобы монтаж был выполнен правильно и в последствии не возникли неполадки.

Уставка теплового расцепителя автоматического выключателя это

1. Введение

Читайте так же:
Для чего используется тепловое действие тока

Настоящие методические указания определяют порядок проверки срабатывания расцепителей автоматических выключателей в режимах перегрузки и короткого замыкания с целью оценки качества автоматических выключателей и сравнением с нормами ПУЭ п.1.7.79, 1.8.34; СНиП 3.06.06-85, раздел 4 и данных завода-изготовителя. Методика выполнена на основании требований ГОСТ Р 50571.16- 2007 и ПУЭ и обязательна к использованию специалистами электролаборатории в Краснодаре и Краснодарском крае ООО «Энерго Альянс».

2. Общие положения

2.1 Измерение изоляционных характеристик проводится в соответствии с методическими указаниями по проведению измерения сопротивления изоляции.

2.2 Объемы и сроки проведения различных видов испытаний, допустимые значения характеристик испытываемого оборудования, устанавливаются на основании РД 34.45-51.300-97 и утвержденных многолетних графиков.

2.3 Знание настоящих методических указаний обязательно для следующих работников Службы изоляции и испытаний и измерений: начальник, инженер, электромонтёр по испытаниям и измерениям.

3. Метод испытаний автоматических выключателей

3.1 Измеряемой величиной является время отключения автоматического выключателя (АВ) при заданной величине тока, превышающей номинальное значение.

3.2 Испытания работоспособности АВ выполняются методом прогрузки их первичным током путем создания искусственного короткого замыкания с регулируемым значением тока в цепи проверяемого автоматического выключателя с измерением времени отключения.

3.3 Для осуществления защитных функций АВ имеют максимальные расцепители от токов перегрузки и токов короткого замыкания. Защита от перегрузки осуществляется тепловыми или электронными устройствами. Защита от токов короткого замыкания осуществляется электромагнитными или электронными расцепителями.

3.4 Перед проведением измерения времени отключения проверяется:

· соответствие типов и параметров АВ проекту или паспорту на электроустановку;

· соответствие токов уставки АВ проекту;

· отсутствие видимых повреждений АВ,

· надежность затяжки контактных зажимов АВ;

· измерение изоляционных характеристик;

· измерение сопротивления постоянному току контактов выключателя.

3.5 До проведения измерения временных характеристик необходимо снять напряжение со всех частей проверяемого АВ и принять меры, препятствующие подаче напряжения на место работы, вследствие ошибочного или самопроизвольного включения коммутационной аппаратуры. Проверить отсутствие напряжения на токоведущих частях. Оставшиеся под напряжением токоведущие части должны быть ограждены, на ограждениях вывешены предупреждающие и предписывающие плакаты.

3.6 Измерение характеристик однофазного АВ проводятся по схеме рис. 1.

Проверяемый расцепитель АВ подключается к прогрузочному трансформатору в цепи которого устанавливается трансформатор тока ТА1 с подключенным амперметром. Второй трансформатор тока ТА2 подключается к токовому реле РТ, контакты которого разрывают цепь секундомера. Первичная обмотка прогрузочного трансформатора через регулировочный трансформатор подключается к сети 220В. Путем изменения напряжения на регулировочном трансформаторе устанавливается ток соответствующий уставке тока данного типа расцепителя АВ. При токе К.З. и перегрузке расцепитель должен отключиться. Время срабатывания АВ определяется по шкале секундомера.

3.7 Измерение характеристик трехфазного АВ проводятся по схеме рис. 2.

Проверяемый расцепитель АВ подключается к прогрузочному трансформатору в цепи которого устанавливается трансформатор тока ТА1 с подключенным амперметром. Первичная обмотка прогрузочного трансформатора через регулировочный трансформатор подключается в сеть 220В. Путем изменения напряжения на регулировочном трансформаторе устанавливается ток соответствующий уставке тока данного типа расцепителя АВ.

Время срабатывания АВ определяется по шкале секундомера, в качестве выключателя которого используется свободный контакт АВ.

3.8 При проверке характеристик теплового и электромагнитного расцепителей автоматических выключателей применяется комплектное испытательное устройство «Сатурн-М» или «Сатурн-М1» и нагрузочный трансформатор НТ-12 с диапазоном 30-12000 А.

3.9 Работу с устройством типа «Сатурн-М» производить согласно «Техническому описанию и инструкции по эксплуатации» данного прибора.

3.10 При проверке характеристик автоматических выключателей могут применяться другие комплекты оборудования соответствующие заданному току, напряжению проверяемого автоматического выключателя и с классом точности не менее 0,5

4. Оценка состояния по результатам измерений

4.1 Испытания автоматических выключателей производятся в соответствии с требованиями ГОСТ Р 50345-92 путем проверки время — токовых характеристик.

4.2 При проверке теплового расцепителя через все полюса пропускается ток нерасцепления АВ. При этом автоматический выключатель не должен расцепиться. Затем в течение 5 секунд ток постепенно повышается до величины условного тока расцепления. Автоматический выключатель должен расцепляться в пределах условного времени. Значения токов и времени приведены в таблице 1.

4.3 При испытаниях АВ из «холодного» состояния через все полюса пропускается ток, равный 2,55 In. Время размыкания должно составлять не менее 1 с. и не более чем: 60 с. при номинальных токах до 32 А включительно, и 120 с. при номинальных токах выше 32 А.

4.4 При проверке мгновенного расцепителя у автоматических выключателей типа «В» через все полюса пропускается ток, равный 3 In в течении времени не менее 0,1 с. АВ не должен расцепляться. Затем через все полюса пропускается ток, равный 5 In и автоматический выключатель должен расцепляться за время менее 0,1 с.

Читайте так же:
Расчет тока теплового расцепителя автоматического выключателя

4.5 При проверке мгновенного расцепителя у автоматических выключателей типа «С» через все полюса пропускается ток, равный 5 In в течении времени не менее 0,1 с. АВ не должен расцепляться. Затем через все полюса пропускается ток, равный 10 In и автоматический выключатель должен расцепляться за время менее 0,1 с.

4.6 При проверке мгновенного расцепителя у автоматических выключателей типа «D» через все полюса пропускается ток, равный 10 In в течении времени не менее 0,1 с. АВ не должен расцепляться. Затем через все полюса пропускается ток, равный 50 In автоматический выключатель должен расцепляться за время менее 0,1 с.

ВВЕДЕНИЕ

В Методических указаниях рассматриваются вопросы защиты от коротких замыканий сети постоянного тока электростанций и подстанций. Указания предназначены для обеспечения персонала электростанций и наладочных организаций, занимающегося эксплуатацией и наладкой системы постоянного тока, методикой расчетной проверки соответствия аппаратов защиты условиям надежной работы.

1. СОСТАВ НАГРУЗКИ СИСТЕМЫ ПОСТОЯННОГО ТОКА И ЕЕ ОСОБЕННОСТИ

1.1. Основная нагрузка системы постоянного тока:

— устройства управления, сигн ализации, блокировки и релейной защиты;

— приводы выключателей (электродвигательные или электромагнитные);

— электродвигатели аварийных маслонасосов системы смазки агрегатов;

— электродвигатели аварийных маслонасосов системы уплотнения вала генераторов;

— электродвигатели аварийных маслонасосов системы регулирования турбин;

— преобразовательный агрегат для аварийного питания устройств связи.

1.2. Перечисленные потребители не допускают перерыва питания, обычно они отключены и включаются в аварийных режимах.

1.3. Нагрузка системы постоянного тока может быть разделена на три вида:

— постоянная — соответствует току, потребляемому с шин постоянного тока в нормальном режиме и остающемуся неизменным в течение всего аварийного режима;

— временная — соответствует току потребителей, подключаемых к аккумуляторной батарее при исчезновении переменного тока и характеризует установившийся аварийный режим;

— кратковременная — длительностью не более 5 с; она характеризуется потребляемым от аккумуляторной батареи (АБ) током в переходном аварийном режиме.

Классификация потребителей постоянного тока по характеру приложения нагрузки:

Устройства управления, блокировки, сигнализации и релейной защиты. Постоянно включенная часть аварийного освещения

Аварийное освещение. Электро двигатели аварийных маслонасосов систем смазки, уплотнения и регулирования. Преобразовательный агрегат связи

Пуск электродвигателей, включение и отключение приводов выключателей

1.4. В соответствии с Нормами технологического проектирования (НТП) для тепловых электростанций, входящих в энергосистему, длительность исчезновения переменного тока допускается не более 30 мин, а для изолированных ТЭС — 1 ч.

В течение этого времени — в установившемся авар ийном режиме — нагрузка равна сумме постоянной и временной нагрузок.

1.5. Постоянная нагрузка может быть определена по схемам питания потребителей постоянного тока или непосредственным измерением. Ее значение, как правило, невелико — 20 — 40 А, она не оказывает большого влияния на работу системы постоянного тока в аварийном режиме.

1.6. Наибольшая нагрузка переходного аварийного режима (толчковая) может иметь место в начальный период переходного процесса или через некоторое время в зависимости от моментов включения приводов масляных выключателей и пусков маслонасосов.

1.7. Пусковые токи электродвигателей резервных маслонасосов и токи, потребляемые приводами выключателей, могут быть определены на основании данных заводов-изготовителей или непосредственным измерением.

1.8. Наиболее удобной формой анализа работы потребителей системы постоянного тока электростанции является построение графика нагрузок I нагр = f(t) для аварийного получасового или часового режимов. Примеры построения таких графиков приведены на рис. 1, 2.

1. Постоянная нагрузка

2. Аварийное освещение

3. Приводы выключателей

4. Преобразовательный агрегат связи

5. Электродвигатели аварийных маслонасосов уплотнения

6. Электродвигатели аварийных маслонасосов смазки

Суммарный график нагрузок

Рис. 1. График нагрузок аварийного получасового режима для ТЭС с поперечным связями

Примечани я: 1. Расчетные графики нагрузок постоянного тока приведены для ТЭС с поперечными связями. 2. Разброс моментов включения аварийных насосов разных турбоагрегатов отражен на графиках 5 и 6. На суммарном графике условно принято включение сначала маслонасосов уплотнения, а затем насосов смазки. Принимаемый порядок их включения не влияет на значение расчетных токов. 3. В конце аварийного режима (t = 30 мин) показан толчковый ток любого выключателя главной схемы, так как в этом случае принимается включение выключателей по одному. Условно принято включение выключателя У-220 с наибольшим током потребления привода (ШПЭ-44). 4. Рассмотрен случай питания аварийных нагрузок трех агрегатов (3×60 мВт или 2×60 + 1×100 мВт).

Читайте так же:
Тепловой провод для водопровода внешний

1. Постоянная нагрузка

2. Аварийное освещение

3. Приводы выключателей

4. Преобразовательный агрегат связи

5. Электродвигатели аварийных маслонасосов уплотнения генераторов

6. Электродвигатели аварийных маслонасосов смазки

Суммарный график нагрузок

Рис. 2. График нагрузок аварийного получасового режима для ТЭС с блоками мощностью 150 — 200 МВт

Примечани е. Время включения насосов уплотнения (30 с) и смазки (1 мин) принято условно. В общем случае моменты включения указанных насосов для 1-го и 2-го блоков не совпадают, что учтено в суммарном графике нагрузок.

2. НАГРУЗКИ ПЕРЕХОДНОГО АВАРИЙНОГО РЕЖИМА

2.1. Время возникновения наибольшей толчковой нагрузки зависит от распределения моментов включения приводов масляных выключателей и пуска маслонасосов.

2.2. Суммарный ток, потребляемый приводами выключателей, достигает максимального значения при переключениях на резервный источник питания СН (АВР).

2.3. Возможны следующие режимы работы АВР:

— мгновенное переключение питания с рабочего на резервное по импульсу от отключающихся выключателей рабочего питания;

— переключение на резервное питание с выдержкой времени 2 — 2,5 с по импульсу от пускового органа минимального напряжения.

2.4. Учет пусковых токов отдельных потребителей постоянного тока выполняется по-разному в зависимости от типа электростанции и мощности устанавливаемых основных агрегатов.

2.5. Для ТЭС с поперечными связями в тепловой части и агрегатами 60 и 100 МВт в начальный момент аварийного процесса и толчковом токе участвуют: постоянная нагрузка, нагрузка от аварийного освещения, нагрузка от приводов выключателей и пусковой ток преобразовательного агрегата оперативной связи, включающегося мгновенно.

Электродвигатели аварийных маслонасосов уплотнения генераторов и смазки пускаются позже за счет работы в начале выбега агрегата главного маслонасоса на валу (пуск первого насоса принимается через 30 с, второго — через 1 — 2 мин после начала аварийного режима).

2.6. При расчетах следует исключить возможность сов падения пусковых режимов всех маслонасосов. Максимальную толчковую нагрузку следует принимать в переходном режиме как сумму установившихся токов, аварийных маслонасосов и пускового тока одного наиболее крупного насоса (см. рис. 1).

2.7. На ТЭЦ с поперечными связями в тепловой части мощностью до 200 МВт устанавливается одна аккумуляторная батарея, а при мощности более 200 МВт — две одинаковой емкости, которые вместе должны обеспечить питание маслонасосов смазки турбин и водородного уплотнения генераторов всех агрегатов электростанции, а также преобразовательного агрегата связи и всех нагрузок аварийного освещения.

На ТЭС с блочными тепловыми схемами для каждых двух блоков, обслуживаемых с одного блочного щита, предусматривается, как правило, одна аккумуляторная батарея.

Для блоков мощностью 300 МВт и выше в тех случаях, когда установка одной батареи на два блока невозможна по условиям выбора коммутационной аппаратуры постоянного тока, допускается установка отдельной батареи для каждого блока. В зависимости от типа и мощности блоков последовательность включения отдельных нагрузок постоянного тока в аварийном переходном режиме различна.

2.8. Для ТЭС с блоками 200 МВт и менее в нормальном режиме в системах смазки и уплотнений давление создается за счет работы главного маслонасоса на валу турбины, включение аварийных маслонасосов происходит аналогично указанному выше для ТЭЦ: можно считать, что маслонасос смазки включается через 1 — 2 мин, маслонасос уплотнения — через 30 с после начала выбега агрегата.

Значение и момент появления максимальных расчетных толчковых токов зависят от типа применяемых выключателей. При использовании воздушного выключателя в цепи резервного трансформатора СН расчетный ток для двух блоков будет максимальным в тот момент, когда аккумуляторная батарея уже несет нагрузку установившегося режима одного блока и принимает толчковую нагрузку переходного режима второго блока при пуске наиболее мощного маслонасоса. При использовании в схеме резервного трансформатора СН на стороне высокого напряжения масляного выключателя наибольшая расчетная толчковая нагрузка возникнет при АВР первого блока. В этом случае определяющим может также явиться время окончания аварийного разряда аккумуляторной батареи, когда значительные толчковые токи воспринимаются разряженной батареей. Этот режим должен проверяться с учетом включения в конце аварийного режима выключателей по одному.

2.9. Для электростанций с блоками 300 МВт и выше в аварийных режимах характерны значительные суммарные толчковые нагрузки, так как при исчезновении переменного тока на АБ почти одновременно накладываются нагрузки приводов при включении выключателей, электр одвигателей маслонасосов смазки и регулирования (для турбин ЛМЗ), маслонасосов уплотнения вала генераторов, агрегата связи и аварийного освещения.

График нагрузок аварийного режима для ТЭС с блоками мощностью 150 — 200 МВт приведен на рис. 2.

3. ОПРЕДЕЛЕНИЕ ЗНАЧЕНИЙ СОПРОТИВЛЕНИЙ ЭЛЕМЕНТОВ СЕТИ ПОСТОЯННОГО ТОКА

3.1. Сопротивление проводов, кабелей и шин может быть рассчитано, если известны их длина и сечение по формуле

Читайте так же:
Кто установил закон определяющий тепловое действие электрического тока

где R — сопротивление, Ом;

ρ — удельное сопротивление, Ом · мм 2 /м;

S — сечение, мм 2 .

Для меди ρ = 0,0172 Ом · мм 2 /м.

Для алюминия ρ = 0,0283 Ом · мм 2 /м.

Для коммутационных и защитных аппаратов сопротивление переходных контактов R пк составляет:

R пк = 1 · 10 -3 Ом.

Для элементного коммутатора сопротивление R эк составляет:

R эк = 5 · 10 -3 Ом.

3.2. Сопротивление элементов сети постоянного тока можно измерить обычными методами: с помощью моста или методом амперметра-вольтметра. Для измерения сопротивления отходящей тупиковой линии она должна быть выведена из работы. На противоположном конце кабеля устанав ливается закоротка, затем производится измерение. Недостатком этого метода является необходимость вывода линии из работы. Примерно 80 % общего числа присоединений щитов постоянного тока составляют «кольца» оперативного тока, вывод из работы которых связан с большими трудностями, а при работе основного оборудования практически невозможен.

Используя особенность «колец» оперативного тока, заключающуюся в том, что оба источника питания расположены на сравнительно небольшом расстоянии один от другого (не более 30 м), их сопротивление может быть измерено под нагрузкой. Для этого «кольцо» переводится в режим одностороннего питания. Со стороны отключенного источника питания к «кольцу» через рубильник подключается резистор сопротивлением 100 — 200 Ом и номинальным током 1 — 2 А последовательно с амперметром.

Затем производят измерение падения напряжения на одном полюсе «кольца» при замкнутом рубильнике от протекания по нему дополнительного тока ΔI и разомкнутом рубильнике. Сопротивление цепи, «кольца» при этом определяется по формуле

(3.2)

где U 2 , U 1 — падение напряжения на полюсе соответственно при протекании по нему дополнительного тока и без него;

ΔI — дополнительный ток.

Схема измерения приведена на рис. 3.

Рис. 3. Принципиальная схема измерения сопротивлений «колец» постоянного тока

4. РАСЧЕТ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ В СЕТИ ПОСТОЯННОГО ТОКА

4.1. Ток короткого замыкания в сети постоянного тока, питающейся от аккумуляторной батареи СК, определяется по формуле

где I кз — ток короткого замыкания, А;

E расч — расчетная ЭДС одного элемента , В;

n — количество элементов батареи;

R АБ — внутреннее сопротивление аккумуляторной батареи, Ом;

R ц — сопротивление цепи короткого замыкания.

4.2. В формуле (4.1) E расч , R АБ — фиктивные расчетные величины, нелинейно зависящие от тока, протекающего через АБ. В свою очередь этот ток зависит от сопротивления цепи короткого замыкания. Для упрощения расчетов кривая нелинейной зависимости тока в АБ от сопротивления, на которое она замкнута, заменяется двумя прямолинейными участками, пересекающимися в точке, соответствующей граничному сопротивлению.

Значение этого сопротивления зависит от номера батареи и количества включенных в работу элементов в соответствии с выражением 4.2:

где R гр — граничное сопротивление, Ом;

N — номер аккумуляторной батареи.

4.3. В том случае, если R ц < R гр , принимается E расч = 1,73 В

Если же R ц > R гр , то принимается E расч = 1,93 В

4.4. Значения сопротивлений, вычисленные по формулам (4.2), (4.3), (4.4) для наиболее часто применяемых на электростанциях аккумуляторных батарей, приведены в табл. 1.

Расцепитель автоматического выключателя

Независимый расцепитель для автоматического выключателя

Автоматический выключатель устанавливается в электрических цепях. Он спасает бытовые приборы от скачков напряжения, перегрузок сети и коротких замыканий. Отключает подачу напряжения расцепитель автоматического выключателя, которым сейчас оборудован каждый автомат. Роль этого приспособления очень велика, поэтому используется оно повсеместно – от простых щитков многоквартирных домов до электрощитового оборудования, обеспечивающего функционирование крупных заводов.

Устройство автоматического выключателя

Из-за чего срабатывает расцепляющий элемент независимого типа

Срабатывает автоматический выключатель с независимым расцепителем обычно при неисправности автомата, например, если не фиксируется переключатель. Также срабатывание происходит при резком превышении предела нагрузки силы тока, на которую рассчитан кабель, при резком снижении или увеличении напряжения и коротких замыканиях, порождающих сверхтоки. Расщепляющий элемент срабатывает и при утечке тока в корпус подключенного к сети прибора или на «землю» при его неисправности.

Независимый расцепитель для автоматических выключателей

Элементы, обеспечивающие дополнительную защиту электрической цепи — это независимые расцепители. Именно благодаря им происходит самостоятельное выключение автоматов или нагрузочных выключателей.

Наибольшее распространение они получили при создании вентиляционных шахт, обеспечивая выключение вентиляционной системы при задымлении или пожаре. Они подключаются к автоматам в щитах, обеспечивающих функционирование вентиляции. При возникновении внештатной ситуации устройства централизованно блокируют поступление электропитания на распределительные щиты вентиляции, предотвращая распространение задымления и угарного газа по этажам здания.

Электромагнитный расцепитель

Общее устройство расцепителя и схема его подключения

Любой расцепитель — это приспособление для отключения защитного аппарата цепи. Используются же расцепители в основе всех автоматических выключателей.

Читайте так же:
Какое сечение провода использовать для теплого пола

При поступлении импульса на конструкцию автомата рычаг давит на механизм, обеспечивающий выключение автоматического защитного устройства и тем самым прерывает подачу электричества, предохраняя линии от выгорания.

Стандартная схема подключения расцепителя проста — его подсоединяют к вводному автомату, чтобы при возникновении внештатной ситуации имелась возможность моментально обесточить щиток полностью и предохранить питаемые им устройства от выгорания.

Расцепители, их типы и назначения

В автоматическом выключателе устанавливаются разные типы расцепителей. Обычно используют электромагнитный и тепловой. Еще применяются автоматические выключатели с комбинированным расцепителем, отличающиеся повышенной надежностью и долговечностью.

Электромагнитный расцепитель автоматического выключателя

Тепловой расцепитель хорошо справляется с перегрузами энергосети, электромагнитный – моментально реагирует на сверхтоки, а комбинированный расцепитель объединяет в себе оба свойства, но все выполняют одну функцию – аварийное отключение напряжения в системе.

Также существуют расцепители минимального напряжения, принцип работы которых основан на отключении автомата при понижении тока ниже нормы.

Тепловой расцепитель автоматического защитного выключателя

Главным элементом данного расцепителя является пластинка, сплавленная из нескольких металлов с разным термическим расширением.

При нагреве пластины металлы, из которых она сплавлена, расширяются с различной скоростью. Это ведет к деформации пластинки, и если ток не выравнивается после определенного времени, пластина искривляется настолько серьезно, что касается контактов, разрывая цепь и прекращая подачу электричества.

Самая частая причина нагрева – высокая нагрузка на линию, защищаемую выключателем, например, одновременное подключение микроволновки, кофемашины, чайника и холодильника в одну цепь.

Стандартные времятоковые характеристики автоматических выключателей

Огромный минус теплового расцепителя в том, что он срабатывает не мгновенно, так как требуется время на нагрев пластинки. Из-за этого он не спасет от сверхтока, однако хорошо справляется с перегрузом сети.

Автоматы с электромагнитным расцепителем

Чтобы оперативно отключить сразу несколько линий при образовании короткого замыкания, применяется электромагнитный расцепитель, представляющий собой индукционную катушку. Внутри этой катушки находится сердечник. При работе системы в стандартном режиме, ток в катушке не создает сильного магнитного поля и никак не влияет на положение сердечника. Но когда происходит короткое замыкание, сила тока многократно возрастает за миллисекунды, и под влиянием увеличившейся силы магнитного поля сердечник моментально двигается в сторону, оказывая давление на механизм выключения автомата.

Сила тока при замыкании возрастает мгновенно, что ведет к такому же моментальному срабатыванию приспособления. Быстрое отключение энергосети дает возможность избежать тяжелых повреждений от сверхтоков.

Проверка работоспособности расцепителя

Расцепители

Тестирование расцепителей всех трех типов проводится с помощью воздействия первичного тока от независимого источника, как при установке автомата, так и регулярно на всем сроке его эксплуатации. Выключатели проверяются в одно и то же время с другим защитным оборудованием.

Основным параметром при проверке является соответствие заявленных параметров механизма с его техническими показателями в момент испытания. Первое, что проверяют при оценке работоспособности, — время, прошедшее от начала подачи критической нагрузки на автомат до расцепления цепи. Параметры нормального временного диапазона указываются производителем в приложенных к устройству технических документах. В случае несоответствия нормам выключатели заменяются на новые.

Такие проверки необходимы, для того чтобы обеспечить стабильную и безопасную работу устройства, и пренебрежение ими может стать фатальным.

Как проверить работоспособность и исправность расцепителя

Тестирование расцепителя должен проводить только опытный специалист с применением специального оборудования. Не стоит ее делать в домашних условиях – это может быть опасно. При неверной оценке работоспособности расцепителя существует риск замыкания, которое может обернуться пожаром.

Как учитываются токи

  1. При проверке для начала осматривается корпус устройства. На нем не должно быть дефектов, таких как сколы, трещины, вмятины и так далее.
  2. Затем проверяют исправность рычажка — он должен свободно ходить и фиксироваться во всех положениях. Для этого делают несколько щелчков выключателем.
  3. Только после тщательной визуальной оценки механизм нагружают, искусственно создавая с помощью специального прибора условия, при которых выключатель должен сработать, и засекают время его срабатывания независимого расцепителя.
  4. После этого точно такую же процедуру производят с прибором после снятия с него корпуса.

Главным критерием при тестировании работоспособности расцепителя является время от нагрузки автомата до отключения. Оно не должно превышать значение, указанное производителем.

При выборе автомата нужно обязательно обратить внимание на вид расцепителя, который в нем установлен. Хоть они и выполняют одну функцию, им требуется разное время на ее выполнение.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector