Berezka7km.ru

Березка 7км
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Удельная теплоёмкость

Удельная теплоёмкость

Уде́льная теплоёмкость — физическая величина, численно равная количеству теплоты, которое необходимо передать телу массой 1 кг для того, чтобы его температура изменилась на 1 Кельвин. Удельная теплоемкость обозначается буквой c и измеряется в Дж/кг*Кельвин.

Единицей СИ для удельной теплоёмкости является джоуль на килограмм-кельвин. Следовательно, удельную теплоёмкость можно рассматривать как теплоёмкость единицы массы вещества. На значение удельной теплоёмкости влияет температура вещества. К примеру, измерение удельной теплоёмкости воды даст разные результаты при 20 °C и 60 °C.

Формула расчёта удельной теплоёмкости: c=frac<Q data-lazy-src=

ЭлементАгрегатное состояниеУдельная
теплоёмкость
Дж/(г·K)воздух (сухой)газ1,005воздух (100 % влажность)газ1,0301алюминийтвёрдое тело0,930бериллийтвёрдое тело1,8245латуньтвёрдое тело0,377оловотвёрдое тело0,218медьтвёрдое тело0,385стальтвёрдое тело0,500алмазтвёрдое тело0,502этанолжидкость2,460золототвёрдое тело0,129графиттвёрдое тело0,720гелийгаз5,190водородгаз14,300железотвёрдое тело0,444свинецтвёрдое тело0,130чугунтвёрдое тело0,540вольфрамтвёрдое тело0,134литийтвёрдое тело3,582ртутьжидкость0,139азотгаз1,042Нефтяные масла (фракция нефти) зависит от углеводородных составляющихжидкость1,67 — 2,01кислородгаз0,920кварцевое стеклотвёрдое тело0,703вода 373К (100 °C)газ2,020сусло пивноежидкость3,927водажидкость4,183лёдтвёрдое тело2,060Значения приведены для стандартных условий, если это не оговорено особо.

Таблица II: Значения удельной теплоёмкости для некоторых строительных материалов

ВеществоАгрегатное состояниеУдельная
теплоёмкость
кДж*(кг −1 ·K −1 )
Объёмная
теплоёмкость
кДж*(дм³ −1 ·K −1 )
асфальттвёрдое тело0,921,2
полнотелый кирпичтвёрдое тело0,841,344
силикатный кирпичтвёрдое тело11,7
бетонтвёрдое тело0,881,7
кронглас (стекло)твёрдое тело0,671,709
флинт (стекло)твёрдое тело0,5032,1
оконное стеклотвёрдое тело0,842,1
граниттвёрдое тело0,7902,1
гипствёрдое тело1,092,507
мрамор, слюдатвёрдое тело0,8802,4
песоктвёрдое тело0,8351,2
стальтвёрдое тело0,473,713
почватвёрдое тело0,80
древесинатвёрдое тело1,71

См. также

Примечания

Литература

Ссылки

  • Термодинамика
  • Физические величины

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое «Удельная теплоёмкость» в других словарях:

УДЕЛЬНАЯ ТЕПЛОЁМКОСТЬ — количество энергии, которое необходимо сообщить 1 г какого либо вещества, чтобы повысить его температуру на 1°С. По определению, для того чтобы повысить температуру 1 г воды на 1°С, требуется 4,18 Дж. Экологический энциклопедический словарь.… … Экологический словарь

удельная теплоёмкость — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN specific heatSH … Справочник технического переводчика

УДЕЛЬНАЯ ТЕПЛОЁМКОСТЬ — физ. величина, измеряемая количеством теплоты, необходимым для нагревания 1 кг вещества на 1 К (см. ). Единица удельной темплоёмкости в СИ (см.) на килограмм кельвин (Дж кг∙К)) … Большая политехническая энциклопедия

удельная теплоёмкость — savitoji šiluminė talpa statusas T sritis fizika atitikmenys: angl. heat capacity per unit mass; massic heat capacity; specific heat capacity vok. Eigenwärme, f; spezifische Wärme, f; spezifische Wärmekapazität, f rus. массовая теплоёмкость, f;… … Fizikos terminų žodynas

Читайте так же:
Розетки для тепловых пушек

Удельная теплоёмкость — см. Теплоёмкость … Большая советская энциклопедия

удельная теплоёмкость — удельная теплота … Cловарь химических синонимов I

удельная теплоёмкость газа — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN gas specific heat … Справочник технического переводчика

удельная теплоёмкость нефти — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN oil specific heat … Справочник технического переводчика

удельная теплоёмкость при постоянном давлении — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN specific heat at constant pressurecpconstant pressure specific heat … Справочник технического переводчика

удельная теплоёмкость при постоянном объёме — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN specific heat at constant volumeconstant volume specific heatCv … Справочник технического переводчика

Температура плавления и удельная теплоемкость цинка.

физические свойства меди какая температура плавления меди Удельная теплота плавления

Под плавлением в физике подразумевают процесс превращения тела из твердого состояния в жидкое, под действием температуры. Классическим повсеместным примером плавления из жизни является таяние льдов, их превращение в воду, или превращение твердого куска олова в жидкий припой под действием паяльника. Передача тому или иному телу определенного количества тепла может изменить его агрегатное состояние, это удивительное свойство твердых тел превращаться в жидкие под действием температуры имеет большое значение для науки и техники. Ученым (а также техникам, инженерам) важно знать при каких температурах плавятся те или иные

металлы(а порой и не только металлы), и для этого в физику вошло такое понятие как «удельная теплота плавления». О том, что означает удельная теплота плавления, какая ее формула расчета, читайте далее.

Почему твердое тело становится жидким?

Но давайте для начала разберем, как происходит сам процесс плавления на атомно-молекулярном уровне. Как мы знаем, в любом твердом теле все атомы и молекулы находятся четко и упорядочено в узлах

кристаллической решетки, благодаря этому твердое тело и является твердым.

Но что происходит, если мы начинает это самое гипотетическое твердо тело сильно нагревать – под действием температуры атомы и молекулы резко увеличивают свою кинетическую энергию и по достижении определенных критических значений, они начинают покидать кристаллическую решетку, вырываться из нее. А само твердое тело начинает буквально распадаться, превращаясь в некое жидкое вещество – так происходит плавление.

При этом процесс плавления происходит не резким скачком, а постепенно. Также стоит заметить, что плавление относится к эндотермическим процессам, то есть процессам, при которых происходит поглощение теплоты.

Процесс обратный к плавлению называют кристаллизацией – это когда тело из жидкого состояния наоборот превращается в твердое. Если вы оставите воду в морозилке, она через какое-то время превратится в лед – это самый типичный пример кристаллизации из реальной жизни.

Температура плавления меди

При нормальных условиях температура плавления меди составляет 1083 градусов по шкале Цельсия. А во время нагрева происходит ряд превращений на молекулярном уровне, что приводит к изменению свойств вещества. Чтобы разобраться во всех этих изменениях, нужно рассмотреть основные этапы нагрева и расплавления медного слитка. Примерный график плавления меди выглядит так:

физические свойства меди

  1. В нормальном состоянии при температуре от 0 до 100 градусов внутри меди образуется прочная кристаллическая решетка, которая обеспечивает материалу большую устойчивость, упругость, химическую инертность. Решетка является достаточно прочной, однако в случае сильной деформации может происходить пространственное изменение положения атомов в решетке. Этим объясняется ковкость и пластичность медных изделий, которые могут сгибаться и деформироваться (скажем, при кузнечной обработке или в случае пресса).
  2. В нормальном состоянии при температуре от 0 до 100 градусов на поверхности медного изделия также образуется тонкая оксидная пленка. Наличие такой пленки является большим плюсом для изделия, поскольку она выполняет множество важных функций — минимизирует контакт с внешними веществами, защищает материал от коррозии, немного увеличивает прочность. В случае охлаждения материала ниже температуры 0 градусов сама медь сохраняет все свои физические свойства. Однако оксидная пленка при охлаждении становится менее упругой и плотной, изделие становится менее твердым (хотя с практической точки зрения это снижение прочности практически незаметно).
  3. При нагреве материала выше температуры 100 градусов происходит постепенная деструкция оксидной пленки на поверхности металла. Это повышает химическую активность материала, что делает его восприимчивым к воздействию веществ во внешней среде. Одновременно с этим при нагреве происходит насыщение энергией атомов меди, что делает материал более пластичным. По этой причине ковку медных изделий выполняют именно после нагрева, поскольку без нагрева для изменения формы изделия понадобится большое количество физических усилий (это может быть мускульная сила кузнеца, расходы электроэнергии для запуска электрического пресса и так далее).
  4. При достижении температуры 1083 градусов кристаллическая медная решетка начинается постепенно разрушаться, что превращает твердую медь в жидкую. На физическом уровне происходит следующее — из-за избытка энергии атомы начинают двигаться в кристаллической решетке более интенсивно и хаотично, что приводит к частому столкновению атомов между собой. В конечном счете это разрушает решетку, хотя за счет взаимного столкновения и притяжения атомы не разлетаются в разные стороны. На физическом уровне такая структура материала соответствует жидкости (то есть такому состоянию вещества, при котором атомы находятся в относительно свободном движении, но не разлетаются в разные стороны подобно газу).
  5. При остывании медной жидкости ниже температуры 1083 градусов происходит постепенная кристаллизация вещества. Медь вновь обретает твердую форму (чем ниже температура, тем интенсивней происходит затвердение вещества). Однако при необходимости жидкую медь можно и дальше нагревать (на химическом уровне будет происходить дальнейшее насыщение атомов энергией). При достижении температуры 2595 градусов по Цельсию жидкость начнет закипать, а медь начнет принимать газообразную форму. На практике длительное удержание вещества в газообразной форме проблематично — при контакте с атмосферным воздухом вещество будет быстро остывать, обратно превращаясь в жидкость. Чтобы обойти это ограничение, используются разные технологии. Оптимальная — нагрев вещества в тугоплавкой камере с поддержанием стабильной температуры выше критической точки (то есть выше температуры 2595 градусов). В таком случае температура среды будет высокой, а остывание вещества происходить не будет.
Читайте так же:
Автоматический выключатель с тепловым расцепителем без выдержки времени

температура плавления меди в домашних условиях

Чтобы расплавить/испарить медное изделие с помощью высокоточного нагревательного прибора, нагревать рекомендуется до чуть более высокой температуры. Скажем, в случае расплавления нагревать изделие следует до температуры 1100-1200 градусов (а не 1083 градусов). С практической точки зрения объясняется это просто — нагрев вещества происходит неравномерно, поэтому некоторые фрагменты медного изделия будут долго держать свою форму, тогда как другие — быстро расплавятся. К тому же вещество будет постоянно остывать, что может привести к кристаллизации отдельных фрагментов расплава.

Определение удельной теплоты плавления

Удельной теплотой плавления называют физическую величину равную количеству тепла (в джоулях), которое необходимо передать твердому телу массой 1 кг, чтобы полностью перевести его в жидкое состояние. Удельную теплоту плавления обозначают греческой буквой «лямбда» – λ.

Формула удельной теплоты плавление выглядит так:

Где m – масса плавящегося вещества, а Q – количество тепла, переданное веществу при плавлении.

Зная значение удельной теплоты плавления, мы можем определить, какое количество тепла необходимо передать для тела с той или иной массой, для его полного расплавления:

Для разных веществ удельная теплота плавления была определена экспериментально.

Плавление цинка График плавления и отвердевания кристаллических тел. Плавление металла Кристаллизация

Плавление сплавов на основе меди

На практике медь используют не только в качестве чистого вещества, но и в виде различных сплавов. Примеры таких сплавов — бронза, латунь, мельхиор и другие. Так как сплавы являются многокомпонентными веществами, то их плавление происходит по другому принципу. Рассмотрим примерный алгоритм плавления медных сплавов на примере латуни:

  1. При температуре до 100 градусов Цельсия кристаллическая решетка является устойчивой и однородной. В случае удара происходит деформация материала. На поверхности материала имеется тонкая оксидная пленка, которая защищает изделие от воздействия воды, атмосферного воздуха, химически активных веществ.
  2. При нагреве латуни до 100 градусов внешняя пленка постепенно плавится, что делает вещество менее прочным. Также из-за повреждения защитной пленки увеличивается химическая активность материала (то есть он начинает более активно вступать в реакцию с водой, воздухом, химическими веществами). Кристаллическая решетка устойчива к небольшому нагреву, поэтому материал сохраняет свою форму.
  3. Температура 880 градусов — это точка солидуса. При достижении этой температуры начинается расплавление самых легкоплавких элементов, входящих в состав сплава. Это приводит к частичному переходу твердого вещества в жидкость. На химическом уровне при достижении точки солидуса происходит частичное разрушение кристаллической решетки вещества, однако у более тугоплавких фракций решетка сохраняется.
  4. Температура 950 градусов — это точка ликвидуса. При достижении этой отметки плавятся самые тугоплавкие фракции, которые сохраняют свою твердость при более низких температурах. В результате на химическом уровне материал полностью становится жидким, поскольку полностью разрушается кристаллическая решетка у всех компонентов, входящих в состав латуни.
Читайте так же:
Чему равно тепло сила тока

график плавления меди

Таблица удельной теплоты плавления

Значение удельной теплоты для разных веществ: золота, серебра, цинка, олова и многих других металлов можно найти в специальных таблицах и справочниках. Обычно эти значения приводятся в виде таблицы.

Вашему вниманию таблица удельной теплоты плавления разных веществ

Вещество105 * Дж/кгккал/кгВещество105 * Дж/кгккал/кг
Алюминий3,892Ртуть0,13,0
Железо2,765Свинец0,36,0
Лед3,380Серебро0,8721
Медь1,842Сталь0,820
Нафталин1,536Цинк1,228
Олово0,5814Платина1,0124,1
Парафин1,535Золото0,6615,8

Интересный факт: самым тугоплавким металлом на сегодняшний день является карбид тантала – ТаС. Для его плавления необходима температура 3990 С. Покрытия из ТаС применяют для защиты металлических форм, в которых отливают детали из алюминия

Основные свойства серебра

При рассмотрении этого металла следует уделить внимание его главным недостаткам — материал может окисляться и вступать в химические реакции с различными компонентами. Именно эти недостатки определяют то, что столовые приборы из серебра со временем теряют свой вид и требуют чистки.

Основными свойствами назовем нижеприведенные моменты:

  1. Температура плавления серебра 925 пробы находится в пределах 880−890 градусов Цельсия. Кипит этот металл при его нагреве до температуры 2210 градусов Цельсия.
  2. Высокие качества теплопроводности и электропроводности определили то, что металл довольно часто используется при изготовлении различных схем и контактов. Зачастую серебро добавляется в качестве примеси к другим сплавам по причине высокой стоимости, в чистом виде применяется крайне редко.
  3. Повышенные светоотражательные способности определили использование металла при изготовлении различных ювелирных изделий. Кроме этого, отметим ковкость, так как структура мягкая и хорошо поддается обработке. За счет этих качеств серебро можно использовать при изготовлении различных ювелирных изделий.
  4. Невысокое значение плотности, приближенное к тому значению, которое имеет алюминий, определяет легкость металла.

Переплавка серебра может проходить и в домашних условиях с учетом всех рекомендаций, касающихся проведения подобной процедуры.

Температура плавления

При какой температуре плавится серебро? Этот показатель зависит от пробы, которая указывает на количество примесей. Рассматривая зависимости концентрации примесей в металле и температуры плавления, отметим нижеприведенные моменты:

  1. Проба 925 указывает на то, что в составе 92,5% чистого драгметалла. Остальной состав приходится на различные примеси.
  2. Если в составе не более 90% драгметалла, то температура плавления не будет выше 770 градусов Цельсия.

Процесс плавления основан на изменении агрегатного состояния металла по причине воздействия высокой температуры и перестроения кристаллической решетки. Сырье, используемое при плавлении, называют шихтой. Нагрев шихты для плавления следует проводить с учетом ряда рекомендаций, а также соблюдая технику безопасности.

Рекомендованная литература и полезные ссылки

Удельная теплота плавления, видео

Автор: Павел Чайка, главный редактор журнала Познавайка

При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту [email protected] или в Фейсбук, с уважением автор.

Удельная теплота плавления

Плавление

Под плавлением в физике подразумевают процесс превращения тела из твердого состояния в жидкое, под действием температуры. Классическим повсеместным примером плавления из жизни является таяние льдов, их превращение в воду, или превращение твердого куска олова в жидкий припой под действием паяльника. Передача тому или иному телу определенного количества тепла может изменить его агрегатное состояние, это удивительное свойство твердых тел превращаться в жидкие под действием температуры имеет большое значение для науки и техники. Ученым (а также техникам, инженерам) важно знать при каких температурах плавятся те или иные металлы (а порой и не только металлы), и для этого в физику вошло такое понятие как «удельная теплота плавления». О том, что означает удельная теплота плавления, какая ее формула расчета, читайте далее.

Читайте так же:
Описать тепловое химическое магнитное действие электрического тока

Почему твердое тело становится жидким?

Но давайте для начала разберем, как происходит сам процесс плавления на атомно-молекулярном уровне. Как мы знаем, в любом твердом теле все атомы и молекулы находятся четко и упорядочено в узлах кристаллической решетки, благодаря этому твердое тело и является твердым.

Но что происходит, если мы начинает это самое гипотетическое твердо тело сильно нагревать – под действием температуры атомы и молекулы резко увеличивают свою кинетическую энергию и по достижении определенных критических значений, они начинают покидать кристаллическую решетку, вырываться из нее. А само твердое тело начинает буквально распадаться, превращаясь в некое жидкое вещество – так происходит плавление.

При этом процесс плавления происходит не резким скачком, а постепенно. Также стоит заметить, что плавление относится к эндотермическим процессам, то есть процессам, при которых происходит поглощение теплоты.

Процесс обратный к плавлению называют кристаллизацией – это когда тело из жидкого состояния наоборот превращается в твердое. Если вы оставите воду в морозилке, она через какое-то время превратится в лед – это самый типичный пример кристаллизации из реальной жизни.

Определение

Удельной теплотой плавления называют физическую величину равную количеству тепла (в джоулях), которое необходимо передать твердому телу массой 1 кг, чтобы полностью перевести его в жидкое состояние. Удельную теплоту плавления обозначают греческой буквой «лямбда» – λ.

Формула удельной теплоты плавление выглядит так:

Где m – масса плавящегося вещества, а Q – количество тепла, переданное веществу при плавлении.

Зная значение удельной теплоты плавления, мы можем определить, какое количество тепла необходимо передать для тела с той или иной массой, для его полного расплавления:

Для разных веществ удельная теплота плавления была определена экспериментально.

Единица измерения

Многих интересует вопрос, в каких единицах измеряется удельная теплота плавления. Так вот, удельная теплота плавления измеряется в Джоулях на килограмм – Дж/кг.

Таблица удельной теплоты плавления

Значение удельной теплоты для разных веществ: золота, серебра, цинка, олова и многих других металлов можно найти в специальных таблицах и справочниках. Обычно эти значения приводятся в виде таблицы.

Вашему вниманию таблица удельной теплоты плавления разных веществ

Вещество10 5 * Дж/кгккал/кгВещество10 5 * Дж/кгккал/кг
Алюминий3,892Ртуть0,13,0
Железо2,765Свинец0,36,0
Лед3,380Серебро0,8721
Медь1,842Сталь0,820
Нафталин1,536Цинк1,228
Олово0,5814Платина1,0124,1
Парафин1,535Золото0,6615,8

Интересный факт: самым тугоплавким металлом на сегодняшний день является карбид тантала – ТаС. Для его плавления необходима температура 3990 С. Покрытия из ТаС применяют для защиты металлических форм, в которых отливают детали из алюминия

Сборник физических диктантов для 8 класса
методическая разработка по физике (8 класс) на тему

Приобретение учащимися знаний по физике имеет важное значение в условиях современного развития общества, так как на физике основывается не только техническая деятельность, но и сам предмет является необходимой основой для научно-исследовательской работы в разных областях наук.

Современному учителю необходимо выявить степень подготовленности учащихся общеобразовательных учреждений по физике. С этой целью был разработан сборник физических диктантов, предназначенный для организации самостоятельной работы учащихся 8 класса, осуществления контроля над знаниями, умениями и навыками.

Данное пособие позволяет учащимся повторить основные физические понятия и расчётные формулы, усвоить основное предназначение физических приборов и материалов, а также закрепить свои знания о деятельности выдающихся учёных – физиков.

Физические диктанты выполнены в соответствии с программой по физике, утверждённой Министерством образования Российской Федерации. Предлагаемое учебное пособие разработано на основе учебника по физике «Физика-8» (А.В.Перышкин)

Цель данного сборника – оказать методическую помощь учителям в систематизации учебного материала и распределении его по урокам обобщения.

Сборник физических диктантов, во-первых, поможет учащимся систематизировать учебный материал. Во-вторых, он ориентирован на умение применять полученные знания. В-третьих, диктанты помогут учащимся подготовиться к проверке учебных достижений, а учителю — провести тематическое оценивание.

Форма работы такого вида имеет определённые преимущества перед традиционными средствами проверки учебных достижений:

1. база вопросов открыта и доступна, поэтому можно подготовиться заранее;

2. проверка таких работ намного легче, чем проверка письменных работ;

3. решается проблема «решебников», которые мешают проведению объективного контроля.

Каждый физический диктант охватывает, как правило, одну учебную тему или её часть. В основу диктантов положены методические принципы, благодаря которым они являются не только контролирующими, но и обучающими.

Физические диктанты могут быть включены во все формы и методы обучения и использоваться на разных этапах учебного процесса для контроля и самоконтроля учащихся в процессе овладения материалом темы.

Скачать:

ВложениеРазмер
sbornik_fizicheskih_diktantov_dlya_8_klassa.docx55.36 КБ

Предварительный просмотр:

Приобретение учащимися знаний по физике имеет важное значение в условиях современного развития общества, так как на физике основывается не только техническая деятельность, но и сам предмет является необходимой основой для научно-исследовательской работы в разных областях наук.

Современному учителю необходимо выявить степень подготовленности учащихся общеобразовательных учреждений по физике. С этой целью был разработан сборник физических диктантов, предназначенный для организации самостоятельной работы учащихся 8 класса, осуществления контроля над знаниями, умениями и навыками.

Данное пособие позволяет учащимся повторить основные физические понятия и расчётные формулы, усвоить основное предназначение физических приборов и материалов, а также закрепить свои знания о деятельности выдающихся учёных – физиков.

Физические диктанты выполнены в соответствии с программой по физике, утверждённой Министерством образования Российской Федерации. Предлагаемое учебное пособие разработано на основе учебника по физике «Физика-8» (А.В.Перышкин)

Цель данного сборника – оказать методическую помощь учителям в систематизации учебного материала и распределении его по урокам обобщения.

Сборник физических диктантов, во-первых, поможет учащимся систематизировать учебный материал. Во-вторых, он ориентирован на умение применять полученные знания. В-третьих, диктанты помогут учащимся подготовиться к проверке учебных достижений, а учителю — провести тематическое оценивание.

Форма работы такого вида имеет определённые преимущества перед традиционными средствами проверки учебных достижений:

  1. база вопросов открыта и доступна, поэтому можно подготовиться заранее;
  2. проверка таких работ намного легче, чем проверка письменных работ;
  3. решается проблема «решебников», которые мешают проведению объективного контроля.

Каждый физический диктант охватывает, как правило, одну учебную тему или её часть. В основу диктантов положены методические принципы, благодаря которым они являются не только контролирующими, но и обучающими.

Физические диктанты могут быть включены во все формы и методы обучения и использоваться на разных этапах учебного процесса для контроля и самоконтроля учащихся в процессе овладения материалом темы.

Рекомендации по выполнению физических диктантов

Физические диктанты, рассчитанные на 10-15 минут, предназначены для оценивания знаний по основным разделам физики. Все физические диктанты состоят из 20 основных физических терминов, явлений, формул, приборов и 20 вопросов к ним. Ученик сам выбирает верный, на его взгляд, ответ и ставит номер своего ответа напротив номера вопроса.

Работу с физическим диктантом можно осуществлять и в обратном порядке. Ученику даётся текст диктанта и по его содержанию он должен дать краткий ответ по каждому из заданий. Например, I=UR . Ученик даёт ответ: закон Ома для участка цепи.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector