Berezka7km.ru

Березка 7км
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Исследование реверсивного счетчика

Исследование реверсивного счетчика

— экспериментальное исследование счетчика-регистра на интегральных микросхемах.

2. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

Регистры и счетчики относятся к разряду цифровых устройств и являются одним из наиболее распространенных элементов вычислительной техники. Они широко используются для построения устройств ввода, вывода и хранения информации, а также для выполнения некоторых арифметических и логических операций.

Для построения счетчиков и регистров используются синхронные триггеры, переключение которых происходит только при наличии синхронизирующего сигнала ( синхроимпульса ) на входе С. Наиболее часто для построения регистров и счетчиков используется универсальный Д — триггер, имеющий специальный информационный вход Д, и динамический вход С ( рис.1 ).

2.1. Устройство, называемое регистром, служит в основном для хранения чисел в двоичном коде при выполнении над ними различных арифметических и логических операций. С помощью регистров выполняютоя такие действия над числами, как передача их из одного устройства в другое, арифметический и логический сдвиг в сторону младших или старших разрядов, преобразование кода из последовательного в параллельный и наоборот и т.д. Функциональная схема и условно — графическое обозначение регистра параллельного типа, собранного на универсальных Д-триггерах, приведена на рис.2 .

По сигналу на входе С информация, поступившая на входы DО¸DЗ, записывается в регистр и хранится в нем до тех пор, пока не произойдет запись другой информации, либо не поступит сигнал на вход R, обнуляющий регистр.

Функциональная схема и условно-графическое обозначение регистра сдвига представлены на рис.З.

Последовательный информационный код поступит на вход D регистра. Импульс команды сдвига С подается одновременно на синхронизирующие входы всех триггеров регистра и переводит каждый триггер в состояние, в котором находился триггер предыдущего разряда. Таким образом, каждый импульс команды сдвига «продвигает» записываемое число на один разряд вправо.

2.2. Устройство, называемое счетчиком, предназначено для подсчета числа поступающих на вход сигналов ( импульсов ) в произвольной системе счисления. Двоичные счетчики строятся на основе триггеров, работающих в счетном режиме ( Т — триггер или счетный триггер).

Счетный триггер может быть получен из универсального D — триггера путем соединения его инверсного выхода 0 со входом D.

Счетный триггер и эпюры сигналов, поясняющие его работу, представлены на рис.4.

У счетного триггера состояние выхода изменяется на противоположное при поступлении на вход С каждого очередного счетного импульса.

Функциональная схема и условнографическое обозначение двоичного счетчика с коэффициентом пересчета 2 3 представлена на рис.5.

Каждый поступающий на вход счетчика импульс перебрасывает первый триггер в противоположное состояние (рис.6). Сигнал с инверсного выхода предыдущего триггера является входным сигналом для последующего и, таким образом, комбинация сигналов на выходах Q 1 , Q 2 , Q 3 будет соответствовать числу поступивших на вход счетчика импульсов, представленному в двоичном коде. Счетчик данного типа называется асинхронным счетчиком.

Если на счетный вход каждого последующего триггера счетчика подавать сигнал с прямого выхода предыдущего триггера, то счетчик будет производить операцию вычитания. Счетчики, способные выполнять функции сложения и вычитания, называются реверсивными.

Для построения счетчика с требуемым коэффициентом пересчета М, отличным от величины 2 N (N — число двоичных разрядов счетчика), используется принудительный сброс счетчика в исходное состояние при достижении счетчиком числа М. Пример такого счетчика с М=9 (М=1001 2 ) представлен на рис.7.

3. ОПИСАНИЕ ОБЪЕКТА И СРЕДСТВ ИССЛЕДОВАНИЯ

3.1. Функциональная схема исследуемого устройства представлена на рис.8 . Устройство включает двоично — десятичный счетчик ДД2, двоичный счетчик ДДЗ, коммутатор входных сигналов ДД1 и логические элементы ДД4 и ДД5, выполняющие функции элементов объединения.

Для подачи информационных и управляющих сигналов используется специальное устройство, управляемое наборными кнопками с фиксацией SА1¸SА16. Нажатому состоянию соответствует сигнал логической «1», отжатому состоянию — сигнал логического «0». Кнопки SА1¸SА16 расположены в левой части лабораторного стенда под надписью «Программатор кодов».

3.2. Функцию двоичного счетчика выполняет микросхема К155ИЕ7. Данная микросхема представляет собой реверсивный четырехразрядный счетчик — регистр, в котором кроме двух счетных входов ( суммирующего «+1» и вычитающего «-1» ) и входа сброса Р имеется четыре информационных входа DО¸DЗ и вход С , разрешающий запись информации в счетчик. Кроме того, для наращивания разрядности счета в микросхеме предусмотрены выходы «³15″ и » < 0″, на которых при достижении счетчиком указанных чисел появляются сигналы логического «0». Выход «³15» в этом случае следует соединять с входом «+1», выход «< 0» — с входом «-1» аналогичной микросхемы.

3.3. Функцию двоично-десятичного счетчика ДД2 выполняет микросхема К155ИЕ6. У заданной микросхемы коэффициент пересчета М=10 и сигнал переноса в старшие разряды на выходе “³9” вырабатывается при превышении счетчиком числа 9.

3.4. При исследовании одного из счетчиков, другой должен находиться в исходном состоянии, что достигается подачей на вход R данного счетчика уровня логической «1» с помощью кнопок SА10 или SA11.

3.5. Запись информации в счетчики производится в параллельном коде путем подачи на входы ДО¸ДЗ логических сигналов «0» и «1» с помощь кнопок SА1¸SА4 и подачи сигнала логического «0» на вход С с помощью кнопки SА9 (для этого кнопку SА9 надо отжать и снова нажать ).

Читайте так же:
Оквэд техническое обслуживание счетчиков

З.6. Счетные импульсы должны поступать на исследуемую схему с клеммы «непр.имп,» ( «

“ ) в виде непрерывной импульсной последовательности и с клеммы «пачка имп.» ( «_|

|_» ) в виде пачки импульсов с числом импульсов в пачке от 1 до 15. Управление режимом работы входов «+1» и «-1» счетчиков производится о помощью кнопок SA13¸SА16, которые обеспечивают выполнение следующих функций:

SА13 («непр,+») — разрешение прохождения непрерывной импульсной последовательности на входы «+1» счетчиков;

SА14 («пачка +») — разрешение прохождения пачки импульсов на входы «+1» счетчиков;

SА15 (“непр.-«) — разрешение прохождения непрерывной последовательности импульсов на входы «-1» счетчиков;

SА16 («пачка -«) — разрешение прохождения пачки импульсов на входы

Примечание. Не допускается одновременное нажатие двух и более кнопок SА13¸S А16.

3.7. Для задания числа импульсов в пачке и посылки необходимой пачки в исследуемый узел используются четыре кнопки с фиксацией «2 0 » ¸ «2 3 » и две кнопки без фиксации «Пуск» и “Устан.О», расположенные на панели лабораторного стенда под надписью «Программатор СИ».

При этом должна соблюдаться следующая последовательность операций:

3.7.1. Набрать заданное число импульсов в пачке в двоичном коде с помощью кнопок “2 0” ¸ «2 3 «. Нажатой кнопке соответствует логическая «1» (при этом загорается соответствующий индикатор).

3.7.2. Нажать кнопку «устан.О».

3.1.3. В режиме наблюдения одновременно двух сигналов на экране мультиметра величина и взаимное расположение этих сигналов регулируется ручками «

» и “­¯“ соответственно в поле надписи «Коммутатор» отдельно для каждого канала ( «Вх1» для КПИ 10 и «Вх2» для КПИ 9 ).

3.2. Исследование элемента ДД3 в статическом и динамическом режиме.

3.2.1. Логические сигналы «0» и «1» на входе триггеров задаются с помощью кнопок с фиксацией SА1¸SА6, расположенных на передней панели блока К32 под надписью «Программатор кодов». Отжатое состояние кнопки соответствует заданию логического «0», а нажатое — заданию логической «1». Нажатое состояние кнопки сопровождается загоранием соответствующего светодиода зеленого цвета, расположенного вблизи данной кнопки «Программатора кодов».

3.2.2. Для подачи положительного импульса ( «_|

|_» ) на вход С триггера необходимо кратковременно перевести соответствующую кнопку из отжатого состояния в нажатое и обратно.

3.2.3. Для индикации логических сигналов на выходе триггера, работающего в статическом режиме ( верхняя часть элемента ДДЗ ), служит левое цифровое табло блока К32. При этом кнопка » IO |_2 «, расположенная непосредственно под табло, должна находиться в нажатом состоянии.

3.2.4 . Нижняя часть элемента ДДЗ представляет собой триггер, работающий в счетном режиме. На его счетный вход С поступает непрерывная последовательность импульсов. Одновременно такая же последовательность импульсов поступает в КПИ1. Выходные сигналы триггера ( прямой и инверсный ) поступают в КП2 и КПИЗ соответственно.

3.2.5. Лабораторный стенд позволяет наблюдать на экране мультиметра одновременно два сигнала с любых двух КПИ из восьми ( двухканальный режим наблюдения ). Выбор двух определенных КПИ производится следующим образом:

3.2.5.1. Нажать кнопку » ВСВ |_ ВНК » под надписью «КВУ», при этом у левых индикаторов обоих цифровых табло начинает светиться знак запятой.

3.2.5.2. При отжатой кнопке»Вх1 |_ Вх2″ набрать с помощью кнопок » 2 0 ¸ 2 3 » программатора «СИ » двоичный код первого выбранного КПИ и нажать кнопку «Пуск». При этом на левом табло у знака запятой появится номер выбранного КПИ.

3.2.5.3. При нажатой кнопке «Вх1 |_ Вх2» повторить указанную процедуру для второго выбранного КПИ. Номер этого КПИ появится у знака запятой правого табло.

3.2.5.4. Нажать кнопку «Коммутатор» под надписью «Контроль V

«». Теперь два выбранных КПИ через каналы коммутатора лабораторного стенда соединены с осциллографом мультиметра. Регулировка величины и расположения сигналов на экране осуществляется раздельно ручками «

» и » ­¯ » под надписью «Коммутатор». Слева расположены ручки регулировки первого канала коммутатора, справа — второго канала коммутатора.

3.2.5.5. Для выхода из режима наблюдения сигналов на экране мультиметра перевести кнопку «ВСВ |_ БНК» под надписью «КВУ» в отжатое состояние.

3.3. Исследование элементов ДД4 (статический режим) и ДД5 (счетный режим ).

3.3.1. Логические сигналы «0» и «1» на S, R, J и К — входы универсальных триггеров подаются с помощью кнопок SА7¸SА12 ( аналогично рассмотренному в п.п.2.1. ).

3.3.2. Сигнал на вход С триггера поступает от встроенного генератора импульсов лабораторного стенда, который вырабатывает серию импульсов положительной полярности. Число импульсов может изменяться от 1 до 15 и устанавливается с помощью кнопок с фиксацией » 2 0 ¸ 2 3 «, расположенных под надписью «Программатор СИ». Кнопки без фиксации «Пуск» и «Устан.О» служат для задания режима работы генератора. При этом должна соблюдаться следующая последовательность действий:

3.3.2.1. Набрать число импульсов в пачке в двоичном коде с помощью кнопок » 2 0 ¸ 2 3 «. Кнопки в нажатом состоянии соответствует двоичная единица ( при этом загорается соответствующий светодиод ).

3.3.2.2. Нажать кнопку «Устан.О»и убедиться, что светодиод кнопки «Пуск» погашен. Генератор импульсов готов к работе.

3.3.2.3. Нажать кнопку «Пуск». При этом генератор вырабатывает нужную пачку импульсов. Для повторного включения генератора нажать кнопку «Устан.О», а затем кнопку «Пуск» и т.д.

Читайте так же:
Как проверить останавливали ли счетчик

3.3.3. Контроль выходных сигналов триггеров ДД4 осуществляется с помощью левого цифрового табло на блоке К32.

3.3.4. Счетные импульсы на триггер ДД5, работающий в счетном режиме, поступают через элемент “И», собранный на микросхеме ДД1.

3.7.3. Нажать кнопку «Пуск». При этом в исследуемый узел поступает заданная пачка импульсов.

3.7.4. Для повторной посылки пачки импульсов нажать кнопку «Устан.О» и затем — кнопку «Пуск» и т.д.

3.8. Считывание показаний счетчика производится с помощью двух цифровых табло, каждое из которых содержит четыре семисегментных индикатора. Оба табло расположены в левом верхнем углу лабораторного стенда. На левом цифровом табло индикация числа производится в двоичном коде, на правом — в десятичном коде ( для выбора того или иного кода кнопку «10 |_ 2» необходимо установить в соответствующее положение ).

3.9. Выходные сигналы двоичных разрядов и сигналы переносов счетчиков, а также входные счетные импульсы сложения и вычитания, поступают параллельно на восемь каналов передачи информации КПИ1¸КПИ8, что дает возможность их наблюдения на экране мультиметра, входящего в состав лабораторного стенда.

Одновременно на экране мультиметра можно наблюдать сигналы двух каналов передачи информации. При этом необходимо выполнить следующие операции:

3.9.1. Нажать кнопку «ВСВ |_ ВНК» под надписью «КВУ»,

3.9.2. При отжатой кнопке «Вх1 |_ Вх2″ набрать с помощью кнопок » 2 0 ¸ 2 3 «, двоичный код первого выбранного КПИ и нажать кнопку «Пуск». При этом на левом табло появится номер выбранного КПИ.

3.9.3. Повторить указанную процедуру при нажатой кнопке «Вх1 |_ Вх2». Номер второго выбранного КПИ должен появиться на правом табло.

3.9.4. Нажать кнопку «Коммутатор» под надписью «Контроль”. При этом выбранные КПИ подсоединяются к соответствующему входу мультиметра. Размах и ориентация сигналов на экране мультиметра регулируется потенциометрами «

» и » ­¯ » , расположенными под надписью «Коммутатор» отдельно для каждого канала.

3.9.5. Для выхода из режима наблюдения сигналов на экране мультиметра необходимо отжать кнопку «ВСВ |_ ВНК» под надписью «КВУ».

4. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ВЫПОЛНЕНИЮ РАБОТЫ

4.1. Исследовать влияние исходного состояния счетчиков на правильность вводимой информации при подаче сигналов на входы Д0¸ДЗ.

4.1.1. Ввести параллельным кодом с помощью кнопок SА1¸SА4 и SА9 некоторые заданные числа ( например » 7 10 , 11 10 , 8 10 , 12 10 , 15 10 , 10 10 “) в один из счетчиков ( см. п.3.5. ), одновременно производя считывание результатов с помощью цифровых табло.

4.1.2. Повторить операции, указанные в п.4.1.1., для другого счетчика. Сделать выводы по п.4.1.

4.2. Исследовать работу счетчиков в счетном ( суммирующем ) режиме с предварительной записью исходной информации.

4.2.1. Подготовить генератор пачки импульсов для работы в режиме одиночного импульса ( п.3.7. ).

4.2.2. Подготовить подачу импульсов на суммирующие входы счетчиков с помощью кнопки SА14, переведя ее в нажатое состояние.

4.2.3. Ввести параллельным кодом в один из счетчиков заданное преподавателем число.

4.2.4. Подавая одиночные импульсы с помощью кнопок «Устан.О” и “Пуск» ( см. п.п.3.7.3.,3.7.4. ), снять показания выходов разрядов счетчика и занести их в таблицу 1.

Цифровые реверсивные счетчики это

Поиск по сайту

Счётчики

Соединив последовательно несколько триггерных схем — делителей частоты на два, получим простейший многоразрядный двоичный делитель. Более общее название для делителей частоты — счетчики. Коэффициент деления счетчика, состоящего из n-триггеров типа Т, составляет 2n; здесь n — число двоичных разрядов счетчика. В настоящее время используется много вариантов счетных схем: асинхронные и синхронные; двоичные и десятичные; однонаправленные, только с увеличением счета, и двунаправленные, счет в которых может увеличиваться или уменьшаться (такие счетчики называют реверсивными). Коэффициент деления счетчика может быть либо постоянным, либо переключаемым.

Основой любой из этих схем служит линейка из нескольких триггеров. Рассмотренные варианты счетчиков различаются схемой управления этими триггерами. Между триггерами добавляются логические связи, назначение которых — запретить прохождение в цикле счета лишним импульсам, К примеру, четырехтриггерный счетчик может делить исходную частоту на 16, так как 2 4 = 16. Получим минимальный выходной код 0000, а максимальный 1111. Чтобы построить счетчик-делитель на 10, трех триггеров недостаточно (10 2 3 ), поэтому десятичный счетчик содержит в своей основе четыре триггера, но имеет обратные связи, останавливающие счет при коде 9 = 1001.

Таким обазом, удобно выпускать четырехтриггерные счетчики в двух вариантах: двоичном и десятичном. Примеры таких микросхем — пары: ИЕ6 и ИЕ7, ИЕ16 и ИЕ17. Расширять функции счетчиков можно; видоизменяя их цепи управления. Первоначально счетчики были асинхронными. В асинхронном режиме предыдущий триггер вырабатывает для последующего тактовые импульсы. Такие счетчики иногда называют счетчиками пульсаций.

В синхронном счетчике все триггеры получают тактовый импульс одновременно, поскольку тактовые входы их соединяются параллельно. Поэтому Триггеры переключатся практически одновременно. В счетчике пульсаций каждый триггер, вносит в процесс счета определенную задержку, поэтому младшие разряды результирующего кода появляются на выходах триггеров неодновременно, т. е. несинхронно с соответствующим тактовым импульсом. Например, для четырехразрядного счетчика пульсаций выходной параллельный код 1111 появится на выходах триггеров уже после того, как поступит шестнадцатый тактовый импульс, кроме того, эти четыре единицы сформируются неодновременно.

Читайте так же:
Xerox phaser 3200 сброс счетчика

Синхронная схема значительно сложнее асинхронной. На ее выходах данные от каждого разряда появляются одновременно и строго синхронно с последним входным импульсом. В синхронный счетчик разрешается синхронная (с тактовым импульсом) параллельная (в каждый триггер) загрузка начальных данных. Триггерная линейка синхронного счетчика снабжается специальным шифратором, который называется схемой ускоренного переноса (СУП).

Внутренние логические элементы управления, которыми часто снабжаются счетчики, позволяют сделать процесс счета реверсивным. Согласно команде, подаваемой на вход управления счетом больше/ меньше , можно либо, увеличивать либо уменьшать на единицу содержимое счетчика при каждом очередном тактовом импульсе. У некоторых счетчиков тактовые входы на увеличение и на уменьшение отдельные.

Сброс данных счетчика, чтобы на всех выходах установился нулевой код, у одних схем асинхронный R, у других синхронный SR, происходит одновременно е приходом тактового импульса. Имеются счетчики с переменным коэффициентом деления. Устанавливаемый коэффициент деления зависит от кода, набранного на входах управления.

Рассмотрим микросхемы КМОП среднего уровня интеграции, необходимых для счета импульсов и деления частот. Счетчики-делители составляют несколько групп. Например, счетчики ИЕ3 ИЕ5 предназначены для построения схем электронных секундомеров, часов, таймеров. Их можно использовать, например, для обслуживания индикаторов цифровых мультиметров, термометров. Счетчики ИЕ8 и ИЕ9 имеют дешифрованные выходы (10 и 8 соответственно). Счетчики ИЕ11 и ИЕ14 однотипные четырехразрядные, реверсивные. Разнообразные возможности деления частот открывает применение счетчиков выполненых на микросхемах КМОП: ИЕ2, ИЕ10, ИЕ16 и ИЕ19. Имеются счетчики асинхронные, синхронные, разрядные и даже 14-разрядный — ИЕ16.

ДВОИЧНЫЕ РЕВЕРСИВНЫЕ СЧЕТЧИКИ

Реверсивные счетчики выполняют как суммирование, так и вычитание числа входных сигналов. В качестве примера синтеза подобного рода устройств проведем синтез двухразрядного.

Аналогично можно провести синтез реверсивного счетчика большей размерности.

Так, повторив вышеприведенную последовательность синтеза

ЯЛ Я ТПРХПЯЯПЯЯНОГП nPRPnriTFmnrn ГИРТШТТГЯ fpM 7m Я ГП Я МА/nr ПАПУ

ШИТЬ число входов логических элементов, за счет объединения сигналов, поступающих на выходные элементы УА, с помощью промежуточных логических элементов. Достоинство счетчика — высокое быстродействие.

5.4. СЧЕТЧИКИ ДЖОНСОНА

В § 3.5 демонстрировался синтез счетчика Джонсона при доопределении значений выходных сигналов УА единицами. Такое доопределение, как было показано, приводит к коду внутренних состояний УА, не устраняющему гонки. В данном параграфе проведем синтез трехразрядного счетчика Джонсона, устойчивого ко всем видам состязаний. Рассмотрим таблицу состояний двухразрядного счетчика Джонсона (табл. 3.17). При

доопределить значения выходных сигналов УА нулями (см. правило синтеза УА в § 3.3). Заполнив таблицу состояний по аналогии с табл. 3.17 и доопределив значения выходных сигналов УА нулями, построим таблицу переходов УА (табл. 5.28).

няется состояние выхода только одного подавтомата (бистабильной ячейки). Поэтому, следуя правилу синтеза УА, изложенному в § 3.3, надо доопределить нулями неопределенные значения выходных сигналов УА. Составим таблицу переходов (табл. 5.30) УА счетчика Грея по аналогии с таблицей переходов (табл. 5.28) счетчика Джонсона. Табл. 5.30 можно сжать, объединяя строки с одинаковым состоянием выхода УА (табл.

5.31) . По табл. 5.31 построим структурную таблицу УА (табл.

5.32) . Найдем из табл. 5.32 простые импликанты, покрывающие единичные интервалы, и запишем кратчайшие ДНФ, свобод-

единичные интервалы, и построим ДНФ, свободные от состязаний:

Схема, реализующая формулы (5.22), приведена на рис. 5.18. Выходы УА позволяют распределить входной сигнал С по восьми каналам.

Можно построить схему счетчика на элементах ИЛИ—НЕ, определяя кратчайшие ДНФ инверсий функций:

R2 — С VQi V QsVs VQ2^2> S3 = CV Q VQ2 ѴгіѴ Qsszf Яз = СУ QiV Q^J rf J Qtfz-

Счётчики

Что бы просмотреть весь текст вместе со схемами и картинками качайте архив. Методические материалы по теме «Счётчики».

Счётчики

Общие сведения

Счетчик — цифровое устройство, осуществляющее счет числа появлений на входе определенного логического уровня. В дальнейшем во всех случаях, когда это не оговаривается специально, будем полагать, что счетчик производит подсчет числа содержащихся во входном сигнале переходов с уровня лог. 0 к уровню лог. 1. При импульсном представлении логических переменных уровню лог. 1 соответствует импульс, и счетчик ведет счет поступающих на вход импульсов.

Числа в счетчике представляются определенными комбинациями состояний триггеров. При поступлении на вход очередного уровня лог. 1 в счетчике устанавливается новая комбинация состояний триггеров, соответствующая числу, на единицу большому предыдущего числа. Таким образом, счетчик представляет собой логическое устройство последовательностного типа, в котором новое состояние определяется предыдущим состоянием и значением логической переменной на входе.

Для представления чисел в счетчике могут использоваться двоичная или десятичная системы счисления. При использовании двоичной системы состояния триггеров и соответствующие им уровни на прямых выходах триггеров определяют цифры двоичных разрядов числа. Если для регистрации двоичного числа в счетчике используется n триггеров, то максимальное значение числа, до которого может вестись счет, N = 2 n — 1. Так, при n = 4: N = 15. На рис. 8.40 показаны вход и выходы счетчика (без раскрытия схемы счетчика), а в табл. 8.19 приведено состояние триггеров, соответствующее различному числу поступивших на вход импульсов.

Читайте так же:
Паспорта для счетчиков сименс

При использовании десятичной системы счисления цифры разрядов десятичного числа в счетчике представляются в четырехразрядной двоичной форме, т. е. используется двоично-кодированная десятичная система счисления. Таким образом, для представления цифр каждого разряда десятичного числа требуется четыре триггера, и если число десятичных разрядов k, то число триггеров, необходимое для регистрации чисел в счетчике равно 4k, а максимальное значение чисел N = 10 k — 1. В табл. 8.20 показана последовательность состояний триггеров в двухразрядном десятичном счетчике, приведенном на рис. 8.41.

Наряду с суммирующими счетчиками, в которых в процессе счета каждое очередное число на одну единицу превышает предыдущее, используются и такие счетчики, в которых в процессе счета числа последовательно убывают (эти счетчики называются вычитающими). Находят применение счетчики, которые допускают в процессе работы автоматическое переключение (реверс) из режима суммирующего счетчика в режим вычитающего счетчика, и наоборот. Такие счетчики называют реверсивными. Хотя для построения счетчиков могут использоваться любые типы триггеров, на которых может быть организован счетный вход, в дальнейшем будем пользоваться только одним типом, JK-триггерами.

В суммирующем счетчике поступление на вход очередного уровня лог. 1 (очередного импульса) вызывает увеличение на одну единицу хранимого в счетчике числа. Таким образом, в счетчике устанавливается число, которое получается путем суммирования предыдущего значения с единицей. Это суммирование проводится по обычным правилам выполнения операций сложения в двоичной системе счисления.

Например, заметим, что в процессе такого суммирования имеют место следующие особенности:

  1. если цифра некоторого разряда остается неизменной либо изменяется с 0 на 1, то при этом цифры более старших разрядов не изменяются;
  2. если цифра некоторого разряда изменяется с 1 на 0, то происходит инвертирование цифры следующего за ним более старшего разряда.

Этот принцип использован при построении схемы счетчика, представленной на рис. 8.42,а. В построении схемы имеются следующие особенности:

  1. входы J и K в каждом триггере объединены и на эти входы подан уровень лог. 1, таким образом, в каждом триггере синхронизирующий вход С является счетным входом триггера;
  2. сигнал с прямого выхода триггера каждого разряда поступает на счетный вход С триггера следующего более старшего разряда, а на счетный вход триггера 1-го разряда Тг1 подаются входные просчитываемые импульсы.

Если на счетном входе С триггера действует импульс, то его положительным фронтом переключается ведущая часть триггера, на отрицательном фронте — ведомая его часть. Итак, при каждом изменении сигнала на счетном входе с уровня лог. 1 на уровень лог. 0 изменяется на противоположное состояние выхода триггера. Таким образом, на отрицательном фронте сигнала на выходе триггера происходит переключение следующего за ним триггера более старшего разряда. На рис. 42,б показана временная диаграмма работы данного счетчика.

Рассмотренная схема счетчика имеет следующие недостатки. Пусть первые k триггеров младших разрядов счетчика установлены в состояние лог. 1 и на вход счетчика поступает очередной импульс. При этом будет происходить процесс последовательного переключения триггеров. Если x — время переключения триггера, то относительно отрицательного фронта входного импульса первый триггер переключится с задержкой x, второй триггер переключается с задержкой x относительно отрицательного фронта сигнала на выходе первого триггера и с задержкой 2x относительно отрицательного фронта входного импульса и т. д. Следовательно, задержка в переключении k-го триггера составит kx.

При большом числе разрядов задержка в переключении триггера старшего разряда может оказаться недопустимо большой. Ниже рассматриваются способы уменьшения этой задержки и, таким образом, увеличения быстродействия счетчика.

Схема счетчика, в разрядах которого реализуются приведенные логические выражения, дана на рис. 8.43,а. Объединенные информационные входы J и К в триггерах разрядов счетчика образуют счетные входы, на которые подаются поступающие в разряды переносы. Подлежащие счету импульсы подаются на входы синхронизации триггеров. При этом если на счетный вход триггера поступает перенос, равный лог. 1, то входной импульс переводит триггер в новое состояние. В противном случае в триггере сохраняется прежнее состояние. Для формирования переносов использованы элементы И. Цепь установки 0 используется для начальной установки в состояние 0 триггеров всех разрядов счетчика.

На рис. 8.43,б представлены временные диаграммы работы счетчика. На переднем фронте входного импульса триггер принимаете поданное на его информационные входы значение переноса, затем при спаде входного импульса на выходе триггера устанавливается новое значение. С каждым входным импульсом число в счетчике увеличивается на единицу.

В данной схеме устранен недостаток предыдущей схемы счетчика. Отрицательным фронтом входного импульса одновременно переключаются те триггеры, на входы которых в данный момент поступает сигнал переноса pi = 1. Таким образом может быть обеспечено более высокое быстродействие, чем в предыдущей схеме.

Фактором, ограничивающим быстродействие данной схемы счетчика, является последовательное формирование переносов.

Вычитающий и реверсивный счетчики

В вычитающем счетчике поступление на вход очередной лог. 1 (очередного импульса) вызывает уменьшение хранившегося в счетчике числа на единицу. Покажем примеры такого вычитания единицы: (см. полную версию).

Из первого примера видно, что если в младшем разряде числа содержится 1, то получающееся в результате вычитания 1 число отличается от исходного лишь в младшем разряде.

Читайте так же:
Многотарифные счетчики устанавливаем только мосэнерго

Если в младшем разряде числа содержится 0, то процесс вычитания сопровождается возникновением переносов. В отличие от операции суммирования, в которой перенос прибавляется в разряд, в который он поступает, в операции вычитания перенос имеет смысл заёма из следующего, более старшего разряда и вычитается из этого разряда. Последовательная передача таких заёмов из разряда в разряд продолжается до тех пор, пока в очередном разряде, в который передается заем, не обнаруживается 1.

Так, во втором из приведенных выше примеров такая 1 обнаруживается в четвертом разряде. В результате заёма этой 1 в четвертом разряде образуется 0, а занятая из этого разряда 1 передается в третий разряд, где она имеет уже значение 2. Из этих двух единиц в третьем разряде остается одна, а другая передается во второй разряд, где она также приобретает значение 2 и т. д.

Таким образом, в результате вычитания часть числа левее первого из разрядов, содержащих 1, остаётся неизменной, цифры остальных разрядов инвертируются.

Счетчик с периодом работы, не выражаемый целой степенью двух

Пусть счетчик должен иметь период циклической работы, равный N, причем N не представляется целой степенью двух. Необходимое число триггеров определяется как минимальное n, удовлетворяющее неравенству 2 n > N.

Счетчик с таким числом триггеров может иметь период 2 n , больший требуемого N. Поэтому после установления в счетчике числа N — 1 необходимо в следующем такте работы обеспечивать сброс счетчика в нулевое состояние.

Покажем метод синтеза такого счетчика. Пусть требуется синтезировать счетчик с периодом N = 3. Число триггеров n = 2 (это минимальное значение, удовлетворяющее неравенству 2 n > N). На рис. 8.48,а представлена незаконченная схема счетчика без указания способа включения информационных входов триггеров J1, К1 и J2, К2.

Рассмотрим метод, позволяющий определить, каким образом должны включаться информационные входы триггеров. Под действием входных импульсов счетчик переходит из одного состояния (с одной комбинацией состояний триггеров) в другое (с другой комбинацией состояний триггеров). Комбинация состояний триггеров определяет двоичное число, значение которого при переходе счетчика в новое состояние увеличивается на единицу или устанавливается равным нулю после достижения максимального значения N — l. Такие переходы счетчика с периодом цикла N = 2 показаны в табл. 8.23.

Переход счетчика в новое состояние связан с переключением триггеров. Для перевода триггеров в требуемые состояния необходимы на его входах определенные логические уровни. В табл. 8.24 показаны все возможные переходы состояния триггера и требуемые для этих переходов логические уровни на входах J и K. Знак «-” означает, что логический уровень на входе может быть произвольным (лог. 0 или 1). Пользуясь этой таблицей, легко построить таблицы истинности для входов J и K всех триггеров счетчика. При этом логические уровни на входах J и K являются функциями текущего состояния и на картах Вейча (табл. 8.25) под а2 и a1 понимается состояние триггеров перед поступлением на вход счетчика очередного импульса.

Пусть к моменту подачи импульса на вход счетчика триггеры находились в состоянии a2 = 0, al = 0. Под действием входного импульса должно быть обеспечено новое состояние a2 = 0, al = l.

Следовательно, в триггере Тг1 происходит переход вида 0 — 1, обеспечиваемый при следующих уровнях на информационных входах: . (см. полную версию)

Кольцевой счетчик

В рассмотренных выше счетчиках число поступлений на вход импульсов представляется в форме двоичного числа, цифры разрядов которого выражаются через состояние триггеров. При этом, если требуется получить десятичное представление числа импульсов, к выходам счетчика подключается дешифратор.

На рис. 52 показано подключение дешифратора к декаде десятичного счетчика. В этой схеме уровень лог. 1 появляется на том из выходов дешифратора, десятичный номер которого соответствует двоичному числу в счетчике. В процессе счета с каждым поступлением на вход импульса происходит переход лог. 1 на следующий выход, номер которого на единицу больше.

Неудобства, связанные с необходимостью применения дешифратора, устраняются в кольцевом счетчике. В нем число поступлений импульсов выражается непосредственно в десятичной системе счисления и не возникает необходимости в использовании дешифратора. И т.д. (качайте)

Делители частоты импульсной последовательности

Делитель частоты — устройство, которое при подаче на его вход периодической импульсной последовательности формирует на выходе такую же последовательность, но имеющую частоту повторения импульсов, в определенное число раз меньшую, чем частота повторения импульсов входной последовательности.

Отличие делителей частоты от счетчиков состоит в следующем. В счетчике каждая комбинация состояний триггеров определяет в некоторой системе счисления число импульсов, поступивших к данному моменту времени. В делителе частоты последовательность состояний может быть выбрана произвольной, важно лишь обеспечить заданный период цикла N. Последовательность состояний выбирается из соображений обеспечения при заданном N наибольшей простоты межтриггерных связей.

Эти связи должны выполняться непосредственным соединением выходов одних триггеров со входами других без использования логических элементов. Счетчик, имеющий то же значение N, может выполнять роль делителя частоты, однако следует иметь в виду, что такое решение будет неэкономичным.

Рассмотрим схемы делителей частоты с различными коэффициентами деления N.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector