Berezka7km.ru

Березка 7км
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Воздействие электрического тока на человека

Воздействие электрического тока на человека

При эксплуатации и ремонте электрического оборудования и сетей человек может оказаться в сфере действия электрического поля или непосредственном соприкосновении с находящимися под напряжением проводками электрического тока. В результате прохождения тока через человека может произойти нарушение его жизнедеятельных функций.

Опасность поражения электрическим током усугубляется тем, что, во первых , ток не имеет внешних признаков и как правило человек без специальных приборов не может заблаговременно обнаружить грозящую ему опасность; во вторых , воздействия тока на человека в большинстве случаев приводит к серьезным нарушениям наиболее важных жизнедеятельных систем, таких как центральная нервная, сердечно-сосудистая и дыхательная, что увеличивает тяжесть поражения; в третьих , переменный ток способен вызвать интенсивные судороги мышц, приводящие к не отпускающему эффекту, при котором человек самостоятельно не может освободиться от воздействия тока; в четвертых, воздействие тока вызывает у человека резкую реакцию одергивания, а в ряде случаев и потерю сознания, что при работе на высоте может привести к травмированию в результате падения.

Электрический ток, проходя через тело человека, может оказывать биологическое, тепловое, механическое и химическое действия. Биологическое действие заключается в способности электрического тока раздражать и возбуждать живые ткани организма, тепловое – в способности вызывать ожоги тела, механическое – приводить к разрыву тканей, а химическое – к электролизу крови.

Воздействие электрического тока на организм человека может явиться причиной электротравмы. Электротравма – это травма, вызванная воздействием электрического тока или электрической дуги. Условно электротравмы делят на местные и общие. При местных электротравмах возникает местное повреждение организма, выражающиеся в появлении электрических ожогов, электрических знаков, в металлизации кожи, механических повреждениях и электроофтальмии (воспаление наружных оболочек глаз). Общие электротравмы , или электрические удары, приводят к поражению всего организма, выражающемуся в нарушении или полном прекращении деятельности наиболее жизненно важных органов и систем – легких (дыхания), сердца (кровообращения).

Местные электротравмы

Это ярко выраженные местные (локальные) повреждения тканей тела, вызванные воздействием электрического тока или электрической дуги. Местным повреждением чаще всего подвергается поверхность кожи человека, но в некоторых случаях поражаются и мышечные ткани, а также связки и кости. Обычно местные электротравмы излечиваются работоспособность человека полностью или частично восстанавливается. Однако в некоторых случаях местные электротравмы приводят к гибели человека. К местным электротравмам относят:

электрические знаки (метки тока),

Электрический ожог является самой распространенной электро­травмой, возникающей у большинства (63 %) пострадавших от электри­ческого тока. В зависимости от условий возникновения ожог может; быть токовый (контактный), возникающий при прохождении тока через тело человека в результате его контакта с токоведущей частью, или дуговой, вызванный воздействием на тело человека электрической дуги.

В электроустановках возможны также ожоги и без прохождения тока, в частности, при прикосновении человека к сильно нагретым частям электрооборудования, от разлетающихся раскаленных частиц металла и т.п.

Различают четыре степени ожогов:

I степень — покраснение кожи и незначительная боль;

II степень — образование волдырей (пузырей) на покрасневшей воспаленной коже;

Ш степень — омертвление всей толщи кожи;

IV степень — обугливание кожи и мышечных тканей.

Обычно тяжесть повреждения организма при ожогах обусловлива­ется не столько степенью ожога, сколько площадью пораженной ожогом поверхности тела. Известно, что поражение ожогом более одной трети поверхности тела приводит к смертельному исходу.

Электрические знаки (метки тока) возникают, в отличие от ожо­гов, при хорошем контакте с электродами. По внешнему виду они пред­ставляют собой припухлость на коже человека круглой или овальной формы, края которой резко очерчены белой или серой каймой. Кожа в этом месте затвердевает в виде мозоли и приобретает серый или желтовато-серый цвет. В пораженном местe происходит как бы омертвение верхнего слоя кожи. Каких-либо по­краснений или воспалений не наблюдается. Электрические знаки, как правило, безболезненны и обычно заканчиваются заживлением. С тече­нием времени верхний слой кожи сходит и пораженный участок приобретает первоначальный цвет, эластичность и чувствительность.

Читайте так же:
Чему равно тепло сила тока

Электрометаллизация кожи — это поверхностное пропитывание кожи мельчайшими частицами металла, расплавляющегося и испаряю­щегося под действием электрической дуги. Поврежденный участок кожи имеет жесткую шероховатую поверхность. Пострадавший испытывает неприятное ощущение от присутствия в коже инородных частиц. Исход такого поражения, как и при ожоге, зависит от площади пораженной по­верхности кожи. С течением времени больная кожа сходит, пораженный участок приобретает нормальный вид и эластичность, все болезненные

Механические повреждения возникают вследствие резких непроизвольных судорожных сокращений мышц под действием проходящего через человека электрического тока. При этом могут произойти разрывы сухожилий, кожи, кровеносных сосудов и нервных волокон. Кроме того, могут иметь место вывихи суставов и переломы костей. Механические повреждения происходят довольно редко, но являются, как правило, серьезными травмами, требующими длительного лечения.

Электроофтальмия — это воспаление наружных оболочек глаз, возникающее в результате воздействия потока ультрафиолетовых лучей, создаваемых электрической дугой. Электроофтальмия развивается через, 4. 8 часов после ультрафиолетового облучения. При этом имеют место покраснение и воспаление кожи и слизистых оболочек век, слезотече­ние, гнойные выделения из глаз, спазмы век и частичное ослепление. Пострадавший испытывает головную боль и резкую боль в глазах, усиливающуюся на свету. В тяжелых случаях нарушается прозрачность роговой оболочки, сужается зрачок. Обычно болезнь продолжается несколько дней. Однако в случае поражения роговой оболочки лечение оказывается более слож­ным и длительным.

Общие электротравмы

Электрический удар — это общее биологическое воздействие электрического тока на организм, которое проявляется в виде рефлекторного (непроизвольного) возбуждения живых тканей организма протекающим через них током. Электрический удар является автоматической реакцией (рефлексом) организма на производимое электрическим током внешнее раздражение. Этот вид воздействия электрического тока выражается очень резко, так как обусловлен действием электрического тока через нервную систему. Электрический удар может привести к судорогам мышц, остановке дыхания, нарушению деятельности сердца и к шоку.

Известно, что при протекании через тело человека переменного тока промышленной частоты начало его ощущения у разных людей на­ступает при различных силах тока и лежит в пределах от 0,8 до 3 мА, что объясняется индивидуальными особенностями человека. Наблюде­ниями установлено, что 99,5 % всех людей начинают ощущать ток силой в 1 мА, который, и принят в качестве порогового неощутимого тока. При протекании через тело тока, лишь незначительно превышающего поро­говый неощутимый ток, человек ощущает слабый зуд, покалывание и пощипывание кожи в месте контакта с электродом. При дальнейшем увеличении тока (до 5 мА) интенсивность неприятных раздражающих ощущений нарастает, одновременно появляются непроизвольные со­кращения (судороги) мышц рук и предплечий. Однако эти судороги еще таковы, что человек может самостоятельно их преодолеть и разорвать цепь протекающего через него тока без посторонней помощи, хотя и с трудом. Иными словами, эти судороги и вызывающие их токи будут для человека отпускающими.

Начиная с 6 мА, отдельные люди (0,5 %) уже не в состоянии самостоятельно разорвать цепь протекающего через них тока, то есть для них ток становится неотпускающим. Поэтому ток силой 6 мА принят в каче­стве порогового неотпускающего тока.

Электрический удар может привести к шоку.

Шок — это тяжелое общее расстройство всех функций организма (кровообращения, дыхания, обмена веществ и т.п.), вызываемое тяжелым психическим потрясением или резким физическим воздействием, которыми может сопровождаться электрический удар. Шок может длиться от нескольких десятков минут до суток. Если пострадавшему не будет оказана своевременная медицинская по­мощь, то наступает смерть в результате полного угасания жизненно важ­ных функций организма.

Читайте так же:
Опыты для теплового действия тока

Можно сделать вывод, что смертельный исход при электро­травмах может наступить в результате следующих повреждений орга­низма:

нарушение сердечной деятельности;

обширные ожоги (обычно при напряжениях выше 1000 В).

Очень часто смерть наступает в результате одновременного дейст­вия нескольких из вышеупомянутых причин, так как в человеческом ор­ганизме все его жизненные функции взаимосвязаны.

Остановка дыхания и прекращение кровообращения (отсутствие пульса) являются первыми внешними признаками смерти. Однако различают два основных этапа смерти:

— клиническую (или «мнимую») смерть;

Клиническая смерть — это переходное состояние от жизни к смер­ти, наступающее с момента прекращения деятельности сердца и легких. Длительность клинической смерти определя­ется периодом времени с момента прекращения кровообращения и ды­хания до начала гибели клеток коры головного мозга. У большинства нормальных людей это время не превышает 6 минут. Если в этот период начать оказывать пострадавшему соответствующую помощь, то даль­нейшее развитие смерти может быть приостановлено и жизнь человека сохранена. Если пострадавшему не оказать своевременную помощь, то клиническая смерть переходит в биологическую смерть, под которой понимают необратимое явление, характеризую­щееся прекращением биологических процессов в клетках и тканях орга­низма и распадом белковых структур. Спасти человека после этого ста­новится невозможным.

Приведите примеры использования теплового действия тока в быту технике

Подключение проводника к источнику питания провоцирует взаимодействие носителей зарядов с молекулярной структурой соответствующего вещества. При определенных условиях этот процесс сопровождается нагревом. Тепловое действие тока используют при создании ТЭНов, предохранителей, других устройств. Примеры расчетов и другие полезные сведения из этой публикации помогут решать различные практические задачи.


Простой эксперимент демонстрирует, как происходит повышение температуры проводника

Тепловое действие электрического тока

Еще в девятнадцатом веке опыты по изучению проводимости свидетельствовали, что ток, проходящий по нагрузке, нагревает ее. Исследования показали, что нагревается не только нагрузка, но и проводники.

Тепловое действие электрического тока

Рис. 1. Тепловое действие электрического тока.

Данный факт легко объясним, если вспомнить, что электрический ток – это перемещение зарядов в веществе нагрузки. При движении заряды взаимодействуют с ионами кристаллической решетки, и отдают им часть энергии, которая и переходит в тепло.

Лабораторная работа №12. «Определение КПД элементного водонагревателя»

Лабораторные работы Водонагреватели Лабораторное оборудование

Лабораторная работа №12.

«Определение КПД элементного водонагревателя».

Цель работы: расчёт КПД элементного водонагревателя.

    наблюдение теплового действия электрического тока; определение КПД электрического чайника как элементного водонагревателя.

Оборудование: электрический чайник, секундомер, термометр, сосуд с водой.

Коэффициент полезного действия в общем виде определяется

. Для случая электрического чайника, в качестве элементного водонагревателя, полезным эффектом является нагревание воды, а затраченным – работа электрического тока, поэтому выражение для расчёта КПД электрического чайника принимает вид , где:

    с – удельная теплоёмкость воды (); m – масса воды в электрическом чайнике, которая определяется по плотности и объёму (), ρ=1000 кг/м3; Δt=t-t0 – изменение температуры воды в чайнике; P – мощность электрического чайника, которая определяется по паспорту; τ — время, за которое вода в электрическом чайнике нагревается до температуры кипения.

Закон Джоуля-Ленца

Поскольку разность потенциалов (напряжение) на нагрузке равна работе, которую совершит единичный заряд, двигаясь по нагрузке, то для вычисления работы тока, необходимо напряжение умножить на заряд, прошедший через нагрузку. Заряд же равен произведению тока, проходящего по нагрузке, на время прохождения. Таким образом:

Детальным изучением теплового действия электрического тока в середине XIXв занимались независимо Д.Джоуль (Великобритания) и Э.Ленц (Россия).

Джоуль и Ленц

Рис. 2. Джоуль и Ленц.

Было выяснено, что если нагрузка неподвижна, то вся работа электрического тока в этой нагрузке перейдет в тепло:

Читайте так же:
Электрическая передача переменно постоянного тока тепловоза

Как правило, напряжение на элементах электрической цепи различно, а ток в ней общий. Поэтому для определения теплового действия удобнее выразить напряжение через ток, учитывая сопротивление:

То есть, количество тепла, образующееся в нагрузке, равно произведению значения тока в квадрате, сопротивления и времени. Этот вывод носит название Закона Джоуля-Ленца.

Иногда ток нагрузки неизвестен, но известно ее сопротивление и подводимое напряжение. В этом случае удобнее выразить ток через известные величины:

и, подставив в формулу выше, получаем:

Из данной формулы можно видеть интересный факт – если в нагревательной плите сгорит часть спирали, и мы просто исключим сгоревшие места, то сопротивление спирали уменьшится, а поскольку напряжение сети останется прежним, то тепло, выделяемое плитой, возрастет. Мощность плитки увеличится.

Тест с ответами по электротехнике

I вариант.

1.​ Что понимается под «электрическим током»? а) графическое изображение элементов. б) это устройство для измерения ЭДС. в) упорядоченное движение заряженных частиц в проводнике.+ г) беспорядочное движение частиц вещества. д) совокупность устройств предназначенных для использования электрического сопротивления.

2.​ Как называется устройство, которое состоит из двух проводников любой формы, разделенных диэлектриком а) электреты б) источник в) резисторы г) реостаты д) конденсатор+

3.​ Какое устройство состоит из катушки и железного сердечника внутри ее? а) трансформатор б) батарея в) аккумулятор г) реостат д) электромагнит+

4.​ Единица измерения потенциала точки электрического поля… а) Ватт б) Ампер в) Джоуль г) Вольт+ д) Ом

5.​ Что такое диполь? а) два разноименных электрических заряда, расположенных на небольшом расстоянии друг от друга.+ б) абсолютная диэлектрическая проницаемость вакуума. в) величина, равная отношению заряда одной из обкладок конденсатора к напряжению между ними. г) выстраивание диполей вдоль силовых линий электрического поля. д) устройство, состоящее из двух проводников любой формы, разделенных диэлектриком.

6.​ Как звучит закон Джоуля – Ленца? а) работа производимая источникам, равна произведению ЭДС источника на заряд, переносимый в цепи. б) определяет зависимость между ЭДС источника питания, с внутренним сопротивлением. в) пропорционален сопротивлению проводника в контуре алгебраической суммы. г) количество теплоты, выделяющейся в проводнике при прохождении по нему+ электрического тока, равно произведению квадрата силы тока на сопротивление проводника и время прохождения тока через проводник. д) прямо пропорциональна напряжению на этом участке и обратно пропорциональна его сопротивлению.

Использование теплового действия электричества

Тепловое действие электрического тока находит широкое применение, в первую очередь, в нагревательных приборах.

Еще одним важным направлением использования теплового действия являются плавкие предохранители. Если необходимо отключить электрическую цепь при превышение допустимого тока, то в цепь можно включить плавкий предохранитель.

Устройство плавкого предохранителя

Рис. 3. Устройство плавкого предохранителя.

Это небольшая колба из негорючего материала, внутри которой проходит плавкая проволочка или лента, сопротивление которой рассчитано так, чтобы при превышении предельного тока она расплавилась, тем самым разорвав электрическую цепь.

Использование теплового действия электрического тока в устройстве теплиц и инкубаторов

Электрический ток
Использование теплового действия электрического тока в устройстве теплиц и инкубаторов.

2. Тепловое действие электрического тока. Закон Джоуля-Ленца.

3. Использование теплового действия электрического тока в устройстве теплиц.

4. Использование теплового действия электрического тока в устройстве инкубаторов.

Современный мир уже немыслимо представить без электричества. Электрический ток используется человеком повсеместно. Бытовые электроприборы прочно заняли свое место в жилище человека, в промышленности, на транспорте и различных учреждениях тоже нельзя обойтись без использования электричества.

Однако сельские жители, особенно пожилого возраста по-прежнему продолжают относиться осторожно к использованию электрического тока.

Цель доклада: Показать, как можно использовать электрический ток для нужд сельского хозяйства.

Читайте так же:
Тепловой провод для обогрева труб

Подобрать литературу по теме доклада

Анализ и обобщение источников литературы

Выступление с докладом перед аудиторией.

Тепловое действие электрического тока. Закон Джоуля-Ленца.

При прохождении электрического тока по проводнику в результате столкновений свободных электронов с его атомами и ионами проводник нагревается. Количество тепла, выделяемого в проводнике при прохождении электрического тока, определяется законом Джоуля — Ленца. Его формулируют следующим образом. Количество выделенного тепла Q равно произведению квадрата силы тока I2, сопротивления проводника R и времени t прохождения тока через проводник:

Количество тепла, выделяющегося в проводе, пропорционально объему провода и приращению температуры, а скорость отдачи тепла в окружающее пространство пропорциональна разности температур провода и окружающей среды.

В первое время после включения цепи разность температур провода и окружающей среды мала. Только небольшая часть тепла, выделяемого током, рассеивается в окружающую среду, а большая часть тепла остается в проводе и идет на его нагревание. Этим объясняется быстрый рост температуры провода в начальной стадии нагрева.

По мере увеличения температуры провода растет разность температур провода и окружающей среды, увеличивается количество тепла, отдаваемое проводом. В связи с этим рост температуры провода все более замедляется. Наконец, при некоторой температуре устанавливается тепловое равновесие: за одинаковое время количество теплоты выделяющегося в проводе становится равным количеству теплоты выделяющемуся во внешнюю среду.

Применение и практический смысл

Непосредственное превращение электричества в тепловую энергию нельзя назвать экономически выгодным. Однако, с точки зрения удобства и доступности современного человечества к источникам электроэнергии различные нагревательные приборы продолжают массово применяться как в быту, так и на производстве.

Перечислим некоторые из них:

  • электрочайники;
  • утюги;
  • фены;
  • варочные плиты;
  • паяльники;
  • сварочные аппараты и многое другое.

На рисунке 3 изображены бытовые нагревательные приборы, которыми мы часто пользуемся.

Бытовые нагревательные приборы

Рис. 3. Бытовые нагревательные приборы

Использование тепловых мощностей в химической, металлургической и в других промышленных отраслях тесно связно с использованием электрической энергии.

Без знания физического закона Джоуля-Ленца было бы невозможно сконструировать безопасный нагревательный прибор. Для этого нужны расчёты, которые невозможно сделать без применения рассмотренных нами формул. На основе расчётов происходит выбор материалов с нужным удельным сопротивлением, влияющим на нагревательную способность устройств.

Закон Джоуля-Ленца без преувеличения можно назвать гениальным. Это один из тех законов, которые повлияли на развитие электротехники.

Примеры действия электрического тока

Как известно, увидеть движущиеся заряды (электроны, ионы) мы не можем, так как они очень малы. Но как тогда можно обнаружить электрический ток?

ДЕЙСТВИЯ ЭЛЕКТРИЧЕСКОГО ТОКА

При протекании электрического тока могут происходить различные явления, которые называются действиями электрического тока.

ТЕПЛОВОЕ ДЕЙСТВИЕ ТОКА

Электрический ток, протекая по проводам, вызывает их нагревание.

Присоединим к полюсам источника тока железную или никелевую проволоку. Замкнув ключ, можно наблюдать, как проволока провиснет, т. е. она нагреется и удлинится. Таким образом её можно даже раскалить докрасна.

Именно на тепловом действии тока основана работа различных бытовых нагревательных приборов, таких, как электрический чайник, электрические плитки, утюги и др. Нить лампочки раскаляется и начинает светиться.

ХИМИЧЕСКОЕ ДЕЙСТВИЕ ТОКА

Как показывает опыт, на электродах, опущенных в раствор электролитов, происходит выделение чистого вещества. Этот процесс называется электролизом. Например, пропуская ток через раствор медного купороса, можно выделить чистую медь.

Электрический ток в металлах не вызывает никаких химических изменений. Химическое действие тока происходит только в растворах и расплавах электролитов.

МАГНИТНОЕ ДЕЙСТВИЕ ТОКА

На большой железный гвоздь намотаем тонкий изолированный провод. Концы провода через ключ соединим с источником тока.

Если замкнуть ключ, то гвоздь намагнитится и будет притягивать к себе гвоздики, железные стружки, опилки. С прекращением тока в проводнике магнитные свойства гвоздя исчезнут.

Читайте так же:
Реле тепловое токов ртл 1016

Явление взаимодействия катушки с током и магнита лежит в основе работы прибора, называемого гальванометром. С помощью гальванометра можно судить о наличии тока и его направлении. Стрелка прибора связана с подвижной катушкой. Когда в катушке появляется электрический ток, стрелка отклоняется.

МЕХАНИЧЕСКОЕ ДЕЙСТВИЕ ТОКА

Металлическую рамку соединим с источником тока. При пропускании электрического тока через рамку она остаётся висеть неподвижно. Но если эту рамку поместить между полюсами подковообразного магнита, то она начнёт поворачиваться.

В этом опыте мы наблюдали механическое действие электрического тока, которое заключается в том, что электрический ток при протекании по рамке, помещённой между полюсами магнита, вызывает её вращение.

Устройство гальванометра

Гальванометром прибор назвали в честь итальянского физика и врача Луиджи Гальвани. Этот прибор способен измерять маленькие электрические токи (постоянные).

На схемах прибор обозначают кружком, внутри которого расположена большая латинская буква G. На некоторых схемах внутри круга находится стрелка, направленная вертикально вверх.

  • подковообразный магнит и
  • находящуюся внутри него рамку, содержащую витки тонкого медного провода (рис. 8).

Рис. 8. Как утроен гальванометр

Подвижная рамка находится на оси и может вокруг нее поворачиваться.

К рамке прикреплена стрелка. Она указывает, на какой угол рамка повернулась во время протекания в ней электрического тока.

Угол поворота отмечают по делениям шкалы.

Рис. 9. Как выглядит прибор для измерения малых токов

Кто такой Луиджи Гальвани

Гальвани был одним из основателей учения об электричестве.

Обнаружил, что в местах контакта различных видов металлов возникает электрическое напряжение.

Проводил опыты с использованием железного ключа и серебряной монеты.

Изучал сокращения мышц под воздействием электричества и пришел к выводу, что мышцы управляются электрическими импульсами, поступающими по нервным волокнам из мозга.

В итальянском городе Болонья неподалеку от здания Болонского университета находится памятник Гальвани. Он находится на площади Piazza Luigi Galvani, носящей имя ученого.

В его честь, так же, назвали один из кратеров на обратной стороне Луны.

А Болонский лицей назван именем Гальвани еще с 1860-го года.

О приборах магнитоэлектрической системы

Такие приборы, содержащие проводящую рамку и небольшой магнит, называют приборами магнитоэлектрической системы. Они получили широкое распространение из-за своего сравнительно простого устройства.

Шкалы приборов можно градуировать в различных единицах измерения, в зависимости от измеряемых физических величин. На основе таких приборов изготавливают вольтметры, амперметры, омметры и т. п.

Действия электрического тока

Нажмите, чтобы узнать подробности

Химическое действие электрического тока состоит в том, что в некоторых растворах кислот (солей, щелочей) при прохождении через них электрического тока наблюдается выделение веществ.

Применение химического действия электрического тока Электролиз. Получение чистых металлов. Гальванопластика (электрохимический процесс, в ходе которого воссоздается форма изделия за счет осаждения на нем металла). Гальваностегия (электрохимический процесс покрытия одного металла другим, более устойчивым в механическом и химическом отношении)

Применение химического действия электрического тока

Получение чистых металлов.

Гальванопластика (электрохимический процесс, в ходе которого воссоздается форма изделия за счет осаждения на нем металла).

Гальваностегия (электрохимический процесс покрытия одного металла другим, более устойчивым в механическом и химическом отношении)

Магнитное действие электрического тока. Проводник, по которому идет ток, приобретает магнитные свойства и, подобно обычным магнитам, начинает притягивать к себе железные предметы.

Магнитное действие электрического тока. Проводник, по которому идет ток, приобретает магнитные свойства и, подобно обычным магнитам, начинает притягивать к себе железные предметы.

Применение магнитного действия электрического тока. Электрогенераторы, электродвигатели, трансформаторы. Микрофоны, громкоговорители. Электромагнит, электрозвонок и др.

Применение магнитного действия электрического тока.

Электрогенераторы, электродвигатели, трансформаторы.

Электромагнит, электрозвонок и др.

Взаимодействие между проводником с током и магнитом. Небольшую проволочную рамку, висящую на нитях, присоединим к полюсам источника тока. Рамка останется неподвижной. Поместим эту рамку между полюсами магнита. Она станет поворачиваться. Это явление используется в устройстве гальванометра.

Взаимодействие между проводником с током и магнитом.

Небольшую проволочную рамку, висящую на нитях, присоединим к полюсам источника тока. Рамка останется неподвижной.

Поместим эту рамку между полюсами магнита. Она станет поворачиваться.

Это явление используется в устройстве гальванометра.

Стрелка гальванометра связана с подвижной катушкой, находящейся в магнитном поле. Когда в катушке существует ток, стрелка отклоняется. С помощью гальванометра можно судить о наличии тока в цепи и его направлении.

Стрелка гальванометра связана с подвижной катушкой, находящейся в магнитном поле. Когда в катушке существует ток, стрелка отклоняется. С помощью гальванометра можно судить о наличии тока в цепи и его направлении.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector