Berezka7km.ru

Березка 7км
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Счетчик импульсов схема алс

Счетчик импульсов схема алс

Квадрокоптер за 1 день и $120

Создать квадрокоптер как платформу для летающего робота я планирую уже очень давно. Первые расчеты и заказ деталей я сделал год еще назад. Однако, делать «просто коптер» чтобы полетать, управляя с пультом или даже в FPV режиме конечной задачей не является. Поэтому коптер должен быть максимально гибким и как можно менее дорогим.
По отдельности все детали для коптера есть, но их сопряжение — дело простое только в теории. Нужно быть и программистом и инженером и моделистом — вертолетчиком. Поэтому процесс движется довольно небыстро. А летать хочется 🙂 Ничто так не расхолаживает и не демотивирует как отсутствие видимых результатов, особенно когда прогресс-то вроде есть, но не наглядный. Да и экспериментировать сразу на большом квадракоптере дорого и опасно.
Поэтому я решил собрать для экспериментов миникоптер. Как всегда — задача сделать недорого, просто и гибко.
Мой результат — готовый коптер за 1 день (на сборку и запуск) и $120 (стоимость квадрокоптера включая доставку). А с аппаратурой — $145.

Кому как, а для меня основной преградой в коптеростроении всегда была дороговизна проверенных наборов деталей (kit), которые можно купить в одном месте и поэкспериментировать. Ведь собрав коптер, просто так летать надоест очень быстро, если, конечно, вы не авиамоделист, для которого это лишь еще одна забавная моделька. Самое интересное — добавить коптеру немного (или много, зависит от умений и изобретательности) самостоятельности. Но пока поднимешь коптер в воздух потратишь столько сил, что на самое интересное запал уже начинает угасать. Да и пока отладишь программу управления — разоришься, ведь каждая ошибка — это почти наверняка падение, а самое дешевое падение — это сломанные пропеллеры.
Сейчас покажу, как это преодолеть.

Заказываем детали

На самом деле основной бюджет коптера еще меньше, всего около $100 включая доставку.
Итак, обязательные запчасти:

Рама с моторами 445 мм$28,95
Плата управления (аналог KKmulticopter, но от HK)$14,95
ESC (регуляторы хода)$5,96 х 4
Пропеллеры прямого и обратного вращения$1,34 + $1,94
Резиновые кольца для крепления пропеллеров$1,4
Пропсейверы Prop Saver w/ Band 4mm (10pcs)$3,99
Аккумулятор на 1300мАч$5,96

Вот и весь джентльменский набор.

Но нам понадобится и кое-что дополнительно. Возможно, у вас что-то из этого имеется, поэтому заказывайте то, чего не хватает:

AVR ISP Программатор для платы управления (подойдет FTBB, USBASP, Arduino… любой)$4,75
Провода от ресивера к плате управления$4
Servo extension для подключения ESC — свои провода не достают, берите любые или спаяйте сами — там три проводка
Радиоаппаратура — любая с 4 и более каналамиот $22,99
Разъемы XT60 к батарее$2.16
Силовой провод или аналогичный медный красного и черного цветов (+ -)$1,29

Радиоаппаратура у меня Turnigy 9x, которую я доработал для использования с LiIon аккумулятором и впаял разъем для обновления прошивки аппаратуры (я пользуюсь прошивкой er9x), но ее сейчас очень долго ждать из-за ее популярности, поэтому и не стал ее рекомендовать. Вообще, берите любую, какая есть в наличии и которая вам нравится с количеством каналов от 4. У меня Mode2 (ручка газа слева), но это не принципиально. Если возьмете 6-канальную Hobby King 2.4Ghz 6Ch Tx & Rx V2, не забудьте к ней шнурок для программирования, т.к. на ней самой никаких настроек не сделать, даже реверсировать каналы. Настраивается только с ПК.

Я покупал на HobbyKing только потому, что абсолютно все, что нам понадобится можно заказать там, но вы можете брать на rctimer.com или в любом другом месте. Если будете брать на HK, заказывайте сразу внизу нужные combo детали — так будет дешевле, чем набирать их по отдельности.
ЗИП:
Нам понадобятся еще винтики М2х10 или М3х10 (их проще достать в магазине, но придется чуть-чуть рассверлить отверстия в креплении моторов, это несложно).
Аккумуляторов берите по возможности хотя бы пару. Если нет зарядки для LiPo аккумуляторов, тоже
берите, это разовое вложение, пригодится.
Пропеллеров берите побольше. Не смотрите, что их по 5 штук в пакете. Я в первый день сломал 4 штуки, пока настраивал и обнаружил глюк в прошивке. 🙂 Это расходный материал, особенно в тесной комнате как у меня.
Запасные моторы тоже, наверное не помешают, но это позднее, сразу вы их вряд ли сломаете.
Понадобится также паяльник, немного припоя и флюса, термоусадочная трубка диаметром 2 и 5 мм или изолента, резинка для денег или от трусов для крепления аккумулятора 🙂
Как только определились что у нас есть, а что заказываем и в каком количестве, заказываем и спокойно ждем недельки три (ну это как повезет с почтой).

Собираем наш квадрик

Боковинки каждого луча склеиваем с помощью ПВА-М или суперклея (ПВА-М дает прочные эластичные швы, но собирать раму лучше вечерком, чтобы до утра оставить клей высохнуть как следует). Собираем все лучи и приклеиваем к нижней центральной пластине. Верхнюю пока отложите в сторону. Ножки лучей склеиваются из двух одинаковых половинок. Поскольку в луче всего 5 деталей (2 стенки и три распорки :), думаю, что сложности в сборке не составит.
Откладываем раму сохнуть до утра. А с утра достаем паяльник, термоусадку, провода и садимся паять.
Сначала продеваем провода всех 4х ESC в лучи вот таким макаром:

Затем берем толстый провод, отрезаем по 2 куска красного и черного цветов длиной сантиметров по 5-7. Зачищаем с концов по 5 мм и в середине примерно 5-7 мм. Куски спаиваем зачищенными серединами крест-накрест. Получится два креста — черного и красного цветов. Концы пока просто залудить.
Затем к красному перекрестию припаиваем красные концы от всех четырех ESC, не забыв надеть кусочки термоусадочной трубки по 1.5-2 см. То же самое проделываем с черной крестовиной. Размещаем все это в центре квадрокоптера.
Отрезаем еще по 1 куску толстого провода и припаиваем их к перекрестьям, концы выводим в отверстие в днище коптера, а место спайки изолируем:

Читайте так же:
Население эфиопии счетчик населения

Проверьте все внимательно, чтобы не было непропаев и коротких замыканий. Припоя не жалейте, токи тут очень серьезные текут, поэтому площадь контакта нужна побольше.
Если все в порядке, можно смазать ПВА-М верхнюю крестовину коптера и приклеить ее, спрятав таким образом все силовые провода внутри. На хвостик из просунутых в отверстие днища проводов надеваем термоусадку и припаиваем коннектор XT60 в соответствии с обозначенной на нем полярностью (красный провод к +).
Теперь крепим моторы к раме парой винтов М3х10, подложив с обратной стороны шайбу. Просовывем в отверстие в раме провода от мотора, припаиваем их к ESC. Перед пайкой наденьте термоусадочные кембрики, но пока не усаживайте их, после проверки может понадобиться сменить направление вращения мотора, для этого нужно поменять местами любые два провода.
Выглядит в готовом виде это примерно так:

Ну вот, теперь можно проверить и настроить ESC и моторы.
Не надевая пропеллеры, подключаем к ресиверу в 3й канал — это Throttle в стандартной 4х канальной схеме (или серво-тестеру, если имеется), затем включаем передатчик (предварительно нужно связать их- bind, эта операция описана в инструкции). Подключаем аккумулятор к коннектору XT60. После писка от ESC плавно даем газ и проверяем, что мотор с ESC в порядке.
Повторяем процедуру для остальных моторов. Я бы заодно порекомендовал настроить тип батареи и скалибровать газ, но это можно и потом.
Проверяя моторы, обратите внимание на направление вращения. Нам нужно, чтобы два мотора напротив друг друга вращались в одну сторону, а соседние — в разные:

Поменять направление вращения мотора, напоминаю, можно поменяв местами любые 2 из трех проводов, которые идут к ESC. Можно сразу пронумеровать моторы по схеме соответственно направлению вращения и подписать карандашом на лучах.
Все вращается правильно и реагирует на ручку газа передатчика правильно? Замечательно, переходим к плате управления.
Она поставляется в мягком корпусе из пеноматериала. аккуратно ее извлекаем, переворачиваем и вставляем обратно, а мягкий корпус на двусторонний скотч или клей крепим на раму так, как указано на картинке выше, чтобы стрелка смотрела между лучами, на которых установленым моторы 1 и 2.
Сбоку к нему клеим на двусторонний скотч ресивер радиоаппаратуры (антенну крепим к одному из лучей):

Я наклеил стрелку на корпус, чтобы было легче ориентироваться на земле где у коптера перед.
Теперь подключаем мозги — скорее всего 2-3 из 4 ESC не достанут до платы управления, тут то и пригодятся servo extension кабели. Но их можно сделать самим. Нужна 3пиновая вилка из обычный PLS гребенки с шагом 2.54 ммм и половинка кабеля для соединения ресивера и платы управления (нам нужен Female коннектор).
Подключаем моторы соответственно нумерации в разъемы M1-М4

Сигнальный провод к центру платы, землю к краю (на предыдущей фото все видно).
Теперь подключаем ресивер. По умолчанию 4-х канальная настройка такая:
1 — Aileron (элероны, ROLL)
2 — Elevator (тангаж, PITCH)
3 — Throttle (газ)
4 — Rudder (руль направления, рыскание, YAW)
Вот и подключаем по порядку каналы к плате, на ней подписано соответственно AIL, ELE, THR, RUDD.
Только не 4 проводами, а проще: первый подключаем как положено — черный провод (земля) к краю платы, сигнальный внутрь, а остальные три канала подключаем одним проводом, нас интересует только сигнальный провод:

Все, осталось прикрепить батарею и коптер собран. Тут и настал черед резинки 🙂

Батарею при взвешивании просто положил сверху.

Осталось прошить плату управления и настроить коптер.
Для прошивки используем AVR ISP программатор. Подключение такое:

Т.к. плата является клоном Kaptein Kuk quadrokopter, можно воспользоваться их софтинкой (KKmulticopter Flash) для прошивки.
У меня стабильно заработала прошивка XXcontrol_KR_XCopter v2.5. Ее можно прошить с помощью avrdude:
avrdude -c usbasp -p m168p -U flash:w:XXcontrol_KR_XCopter_v2_5.hex:a
или выбрать в программульке для прошивки, она скачает сама.

v4.7 от Kaptein Kuk у меня заработала некорректно, поэтому не советую ее.

Отключаем от программатора, выполняем настройку по инструкции (пункты 1, 2, 4 и 8, остальное по желанию).
Все, полетели 🙂
Взлетать советую медленно и очень осторожно. Сначала поставьте коптер стрелкой от себя, нужно попробовать приподнять коптер газом, если наклоняется или вращается, триммируем его, чтобы он взлетал без перекоса (попробуйте покачать аккуратно стиками элеронов и тангажа, буквально касаясь их, пока он еще на земле, чтобы убедиться, что все каналы работают правильно, если нет, инвертируйте нужные, у меня это был канал Elevator). Затем если он покачивается стиками правильно, чуть-чуть добавьте газа, чтобы взлетел на пару сантиметров, и опускайте обратно. Ну и дальше учимся летать 🙂 (Я пока определил что к чему, сломал 2 пропеллера об стену — глюк прошивки v4.7, а потом еще в процессе настройки коэффициентов усиления гироскопов сломал еще пару — коптер раскачивался и задел диван, дома тесно, поэтому дома больше не летаю). Если не уверены или страшно — наденьте защитные очки и оденьтесь, пропеллеры бьют ощутимо, мне не попадало по рукам, но они острые и вращаются очень быстро!
Как освоите эту платформу, можно ставить свой контроллер или писать свою прошивку, добавлять акселерометры, барометр, компас, сонар, GPS, телеметрию, LPS лазер и делать из платформы робота. Но сначала получаем удовольствие, от винта, мы взлетели!
Удачных вам полетов!

Исследование электронных устройств цифровой преобразовательной техники. Схема реализации счетчика-делителя на 9

Ступенчатый дешифратор строится на основе двух дешифраторов на "т" и "п-т" входов и 2 n двухвходовых конъюнкторов. При большом числе входов ступенчатые дешифраторы имеют существенно меньшие аппаратурные затраты, чем линейные и пирамидальные, и большее быстродействие.

Дешифраторы выпускают в виде отдельных ИМС. В работе исследуется реализованный на ИМС К155ИД1 дешифратор, преобразующий двоичный код в десятичное число. Дешифраторы широко применяют в вычислительной и информационно измерительной технике. Одно из направлений — управление индикаторами, отображающими знаковую информацию.

Рис. 16.2. Схема счетчика и отображения числа импульсов на светодиодном ивдикаторе

Читайте так же:
Штуцер приварной для счетчика

Примером такого применения может быть схема счета и отображения числа импульсов, приведенная на рис. 16.2. Она содержит двоичный счетчик СТ2, который представляет число поступивших на его вход импульсов в двоичном коде, DC — дешифратор, управляющий транзисторными ключами на VT1-VT7 и семисегментный светодиодный индикатор FD1-FD7.

Исследуемая аналогичная схема отображения числа импульсов содержит двоичный счетчик на ИМС К155ИЕ5, дешифратор на ИМС КР514ИД1, семисегментный светодиодный индикатор АЛС324А.

Описание лабораторной установки

Исследование микроэлектронных цифровых устройств осуществляется на макете "Цифровые ИМС" лабораторной установки.

Макет выполнен в виде самостоятельного устройства настольного типа, все органы управления и коммутации которого расположены на его лицевой панели.

Напряжение питания 5 В подается с помощью проводников на клеммы макета ("+","-") от блока БП-5. Макет включается тумблером. Для выполнения работы на лицевой панели макета используются логические элементы "2И-НЕ" D1, двоично-десятичный реверсивный счетчик D5, дешифраторы D7, D8, светодиодный индикатор HI 7, индикаторы логического состояния Н1-Н16, переключатели логического состояния S3 — S10.

Порядок выполнения работы

1. Исследовать четырехразрядный асинхронный двоичный счетчик, реализованный на ИМС К155ИЕ5.

1.1. Собрать электрическую схему рис. 3. Подавая на вход суммирующего счетчика единичные импульсы от 1 до 15, записать в двоичном коде состояние триггеров на выходе счетчика. Результаты записать в табл. 1.

1.2. Разработать схему счетчика-делителя С Коэффициентом, заданным преподавателем (3,5,6,9), и представить на проверку.

1.3. Собрать разработанную схему, выходные сигналы вывести на индикаторные светодиоды VL3 — VL6.

1.4. Подавая тумблером S1 на вход счетные импульсы, доказать правильность работы схемы (составить таблицу, аналогичную табл. 1).

Примечание. Для разработки схемы воспользоваться примером, приведенным на рис.

Счетчик импульсов схема алс

Автоматическая локомотивная сигнализация ( АЛС ) представляет собой комплекс устройств, автоматически повторяющих в кабине машиниста показания путевых светофоров, к которым приближается поезд, независимо от профиля пути и погодных условий.
По способу осуществления связи между движущимся локомотивом и неподвижными путевыми сигналами устройства АЛС подразделяются на непрерывного действия ( АЛСН ) и точечного действия ( АЛСТ ). При действии АЛСН показания путевых светофоров передаются на локомотив непрерывно, в течение всего времени следования по перегонам и станциям. АЛС точечного действия используется на участках с полуавтоблокировкой, при этом путевые сигналы передаются на локомотив только в определенных местах (точках) пути перед путевыми светофорами. В обеих системах АЛС для передачи сигналов с пути на локомотив используется рельсовая цепь, а сама передача сигналов осуществляется индуктивным способом.
На большинстве участков Российских железных дорог используется АЛС непрерывного действия, которая дополняется устройствами автостопа, устройствами проверки бдительности машиниста и контроля скорости.

Рисунок 1. Структурная схема АЛСН.

Автостопами называются устройства, контролирующие реакцию машиниста на показания путевых светофоров, к которым приближается поезд, и при необходимости (при непринятии мер машинистом) осуществляющие автоматическое приведение в действие тормозов. Таким образом, основная функция автостопов — предупреждение проезда светофора с запрещающим показанием и остановка поезда, если имело место превышение допускаемой скорости движения.

Все устройства, входящие в состав АЛСН , можно разделить на путевые (передающие) и локомотивные (принимающие). Путевые устройства находятся в релейном шкафу, расположенным около путевого светофора. В состав путевых устройств (Рис. 1.) входят кодовый путевой трансмиттер ( ТРМ ) и трансформатор ( Тр ). Трансмиттер служит для преобразования сигнального показания путевого светофора в соответствующую комбинацию число импульсного кода то есть показания путевого светофора в соответствующую комбинацию число-импульсного кода, то есть трансмиттер периодически посылает в рельсовую цепь электрический сигнал (Рис. 6) переменного тока (код) с определенным числом импульсов и продолжительностью паузы между импульсами и сериями импульсов.

Рисунок 2. Схема кодов локомотивной сигнализации

Зеленому огню путевого светофора (Рис. 5) соответствует кодовая серия, содержащая три импульса с длинным интервалом, который отделяет его от трех импульсов следующей комбинации (Рис. 2.);
желтому огню соответствует серия (Рис. 4) из двух импульсов;
красному огню (на локомотивном светофоре горит желтый с красным огонь) — один импульс.

Рисунок 3. Код красного огня локомотивного светофора

Рисунок 4. Код желтого огня локомотивного светофора

Рисунок 5. Код зеленого огня локомотивного светофора

Частота кодового тока на участках с автономной тягой или с электротягой постоянного тока составляет 50 Гц, а на участках с электротягой переменного тока — 25 Гц или 75 Гц.
В состав локомотивных устройств АЛС (рис. 1.) входят приемные катушки ( ПК ), фильтр ( Ф ), локомотивный усилитель ( УС ) с импульсным реле ( ИР ), дешифратор ( Д ), электропневматический клапан автостопа ( ЭПК ), локомотивный светофор ( ЛС ), локомотивный скоростемер ( ЗСЛ ), рукоятка (кнопка) бдительности ( РБ ), кнопка ( ВК ) для зажигания на локомотивном светофоре белого огня вместо красного, а также тумблер (переключатель) ДЗ для изменения интервала времени периодической проверки бдительности машиниста.

Рисунок 6. Кодовые посылки трансмиттеров

Путевыми устройствами АЛС кодовый ток по одной из рельсовых нитей посыпается навстречу локомотиву, замыкается через его первую колесную пару и по второй рельсовой нити возвращается к источнику питания. Протекание в рельсах импульсов переменного тока сопровождается образованием вокруг рельсов переменного магнитного поля, в котором перемещаются приемные катушки локомотива, подвешенные перед первой колесной парой с каждой стороны по две. Высота установки приемных катушек над уровнем головки рельса составляет 100 — 180 мм. Силовые линии магнитного поля, пересекая витки ПК , наводят в них переменную э.д.с., величина которой зависит от величины кодового тока в рельсах и высоты установки катушек. Так, при высоте ПК над уровнем головки рельса 150 мм и кодовом токе в рельсах 10 А величина э.д.с. составляет приблизительно 0,65 – 0,75 В. Для суммирования э.д.с. обеих катушек они включаются последовательно. Минимальный кодовый ток, который может восприниматься приемными катушками, для разных видов тяги и рода тока составляет от 1,2 А до 2,0 А.

Наведенная в ПК э.д.с. через фильтр ( Ф ), поступает в локомотивный усилитель ( УС ). Фильтр настраивается на частоту кодового тока и не пропускает в усилитель токи других частот (Рис. 7), а усилитель усиливает кодовый сигнал до величины напряжения, используемого в цепях управления локомотива. В усилителе происходит также преобразование кодовых импульсов переменного тока в импульсы постоянного тока. Включенное на выходе усилителя импульсное реле ( ИР ) является повторителем кода, посылая его в дешифратор ( Д ) как зашифрованное показание сигнала.
Дешифратор содержит ряд реле, которые объединены в несколько блоков.

Читайте так же:
Складской счетчик что это

Рисунок 7. Кодовые импульсы АЛСН на выходе усилителя

Блок счета (БС) — включает в себя реле-счетчики, которые обеспечивают счет числа импульсов и интервалов между ними, поступающего с пути кода.

Блок фиксации кода (БФК) — включает в себя сигнальные реле « 3 », « Ж », « КЖ », которые создают соответствующие цепи питания сигнальных ламп локомотивного светофора.

Блок соответствия (БКС) — обеспечивает контроль (сравнение, соответствие) принимаемого с пути кода и состояние сигнальных реле БФК . Блок соответствия периодически через 5 — 6 с подключает сигнальные реле к реле-счетчикам с тем, чтобы на локомотивном светофоре загорелся нужный огонь. Таким образом, смена огней локомотивного светофора происходит с запаздыванием на 5 — 6 с. Это время соответствует приему трех серий кодовых импульсов.

Локомотивный светофор, дублирующий показания путевых светофоров, имеет следующие сигнальные показания:
— зеленый огонь « 3 » (на путевом светофоре, к которому приближается поезд, горит зеленый огонь);
— желтый огонь « Ж » (на путевом светофоре желтый огонь);
— желтый огонь с красным « КЖ » (на путевом светофоре красный огонь);
— красный огонь « К » — сигнал, запрещающий движение; появляется после проезда путевого светофора с красным огнем;
— белый огонь « Б » — показания путевых светофоров на локомотив не передаются.

Красному и белому огням локомотивного светофора соответствует отсутствие в рельсовой цепи электрического сигнала, а также непрерывный ток или импульсы тока, подаваемые с небольшими интервалами.

Блок контроля скорости — содержит реле контроля скорости ( РКС ), взаимодействующее с локомотивным скоростемером. Таким образом, принудительное торможение поезда ставится в зависимость не только от показания сигнала, но и от скорости следования поезда.

Блок бдительности (ББ) — осуществляет контроль бдительности машиниста.
При смене огня локомотивного светофора, например с зеленого на желтый, разрывается электрическая цепь питания катушки ЭПК и появляется звуковой сигнал, который звучит в течение 7 — 8 с. До истечения этого времени машинист должен нажать рукоятку (кнопку) бдительности ( РБ ) и тем самым восстановить цепь питание катушки ЭПК и прекратить звучание свистка. В случае отсутствия со стороны машиниста указанных выше действий ЭПК выполнит экстренное торможение. Таким образом, РБ служит для подтверждения машинистом своей бдительности и предупреждения принудительного экстренного торможения, вызываемого ЭПК .
При вступлении локомотива на некодированный участок пути в блоке БКС дешифратора обесточивается реле присутствия кодов, которое обеспечивает зажигание на локомотивном светофоре белого огня после зеленого пли желтого и зажигание красного огня после « КЖ ». При этом имеется возможность с помощью кнопки ВК зажечь белый огонь вместо красного на локомотивном светофоре. Тумблер ДЗ имеет два положения — « АЛС » и « без АЛС ». Переключением тумблера из одного положение в другое изменяется интервал времени периодической проверки бдительности машиниста.

Рисунок 8. Локомотивное устройство формирует программную скорость так,
чтобы предотвратить превышение скорости и проезд запрещающего сигнала

Локомотивный скоростемер ( ЗСЛ ) в схеме АЛСН обеспечивает действие ЭПК в случае превышения контролируемых им скоростей движения, а также регистрирует на специальной ленте включенное положение ЭПК , нажатие РБ в пути следования и наличие огней на локомотивном светофоре.
Как правило, совместно с локомотивными устройствами АЛСН работает блок предварительной световой сигнализации ( БПСС ), который включает специальную световую сигнализацию, указывающую машинисту о необходимости нажатия РБ до подачи свистка ЭПК .

Схема АЛСН связана с цепями управления локомотива — при выключенном автостопе невозможно привести локомотив в движение, а при срабатывании ЭПК на экстренное торможение тяговый режим автоматически отключается.
Таким образом, совместная работа путевых и локомотивных устройств АЛСН обеспечивает:
— непрерывную передачу на локомотивный светофор показаний путевых светофоров, к которым приближается поезд;
— однократную проверку бдительности машиниста при смене огней локомотивного светофора;
— периодическую проверку бдительности машиниста при следовании с « К » огнем локомотивного светофора и скорости движения < 20 км/ч , « КЖ » или « Б » огнях; « Ж » огне и скорости движения более V ж , отрегулированной на скоростемере;
— возможность изменения интервала времени периодической проверки длительности машиниста при следовании по участкам, не оборудованным путевыми устройствами АЛСН ;
— контроль скорости движения при « КЖ » и « К » огнях локомотивного светофора;
— невозможность включения тяги при выключенных устройствах АЛСН с автостопом;
— автоматическое выключение тягового режима при срабатывании ЭПК автостопа на экстренное торможение;
— возможность включения на локомотивном светофоре белого огня вместо красного.

Рисунок 9. Контроль скорости системой АЛСН при приближении к светофору с запрещающим показанием

В настоящее время на ряде железных дорог России внедряется система автоматической локомотивной сигнализации с фазовой модуляцией кодового сигнала ( АЛС-ЕН ), позволяющая существенно увеличить объем передаваемой информации.

Микросхема К561ИЕ8. Описание и схема включения

Довольно популярная микросхема К561ИЕ8 (зарубежный аналог CD4017) является десятичным счетчиком с дешифратором. В своей структуре микросхема имеет счетчик Джонсона (пятикаскадный) и дешифратор, позволяющий переводить код в двоичной системе в электрический сигнал появляющийся на одном из десяти выходов счетчика.

Счетчик К561ИЕ8 выпускается в 16 контактном корпусе DIP.

Технические параметры счетчика К561ИЕ8:

  • Напряжение питания: 3…15 вольт
  • Выходной ток (0): 0,6 мА
  • Выходной ток (1): 0,25 мА
  • Выходное напряжение (0): 0,01 вольт
  • Выходное напряжение (1): напряжение питания
  • Ток потребления: 20 мкА
  • Рабочая температура: -45…+85 °C

Габаритные размеры микросхемы К561ИЕ8:

Назначения выводов К561ИЕ8 :

  • Вывод 15 (Сброс) — счетчик сбрасывается в нулевое состояние при поступлении на данный вывод сигнала лог.1. Предположим, вы хотите, чтобы счетчик считал только до третьего разряда (вывод 4), для этого вы должны соединить вывод 4 с выводом 15 (Сброс). Таким образом, при достижении счета до третьего разряда, счетчик К561ИЕ8 автоматически начнет отсчет с начала.
  • Вывод 14 (Счет) – вывод предназначен для подачи счетного тактового сигнала. Переключение выходов происходит по положительному фронту сигнала на выводе 14. Максимальная частота составляет 2 МГц.
  • Вывод 13 (Стоп) – данный вывод, в соответствии от уровня сигнала на нем, позволяет останавливать или запускать работу счетчика. Если необходимо остановить работу счетчика, то для этого необходимо на данный вывод подать лог.1. При этом даже если на вывод 14 (Счет) по-прежнему будет поступать тактовый сигнал, то на выходе счетчика переключений не будет. Для разрешения счета вывод 13 необходимо соединить с минусовым проводом питания.
  • Вывод 12 (Перенос) – данный вывод (вывод переноса) используются при создании многокаскадного счетчика из нескольких К561ИЕ8. При этом вывод 12 первого счетчика соединяют с тактовым входом 14 второго счетчика. Положительный фронт на выходе переноса (12) появляется через каждые 10 тактовых периодов на входе (14).
  • Выводы 1-7 и 9-11 (Q0…Q9) — выходы счетчика. В исходном состоянии на всех выходах находится лог.0, кроме выхода Q0 (на нем лог.1). На каждом выходе счетчика высокий уровень появляется только на период тактового сигнала с соответствующим номером.
  • Вывод 16 (Питание) – соединяется с плюсом источника питания.
  • Вывод 8 (Земля) – данный вывод соединяется с минусом источника питания.
Читайте так же:
Номер счетчика дата изготовления

Временная диаграмма работы счетчика К561ИЕ8

На рисунке ниже приведено условное обозначение микросхемы К561ИЕ8:

Несколько примеров применения счетчика К561ИЕ8

Бегущие огни на светодиодах

Если вы хотите построить бегущие огни на 10 светодиодах, то для этого можно использовать микросхему К561ИЕ8 совместно с таймером NE555.

Схема позволяет организовать быстрое поочередное свечение каждого светодиода. Источник тактовых импульсов построен на таймере NE555, который включен в схему как генератор прямоугольных импульсов. Частота импульсов на выходе NE555, а следовательно и скорость бегущих огней, регулируется переменным резистором R2.

Так же можно увеличить число светодиодов путем каскадного подключения счетчиков. Такую работу К561ИЕ8 вы можете посмотреть в программе Proteus.

mikrosxema-k561ie8-opisanie-i-sxema-vklyucheniya_kaskad

Таймер на К561ИЕ8

С помощью десятичного счетчика К561ИЕ8 можно собрать простой таймер. При нажатии кнопки SА1 происходит разряд конденсатора С1 через резистор R1. Когда кнопка SА1 отпущена, конденсатор C1 будет заряжаться через резистор R2, вызывая нарастающий фронт на тактовом входе (14) счетчика К561ИЕ8. Это приведет к тому, что на выходе Q1 появляется высокий логический уровень (практически напряжение питания), в результате чего будет светиться светодиод HL1.

В то же время конденсатор С2 начнет заряжаться через сопротивления R4 и R5. Когда напряжение на нем достигнет примерно половины напряжения питания, это приведет к сбросу счетчика. Выход Q1 перейдет в низкий уровень, светодиод погаснет и конденсатор С2 будет разряжаться через диод VD1 и резистор R3. После этого схема будут оставаться в таком стабильном состоянии, пока кнопка SА1 не будет нажата снова.

Изменяя сопротивление R4 можно выбирать необходимый интервал таймера в диапазоне от 5 секунд и 7 минут. Ток потребления данной схемы в состоянии ожидания составляет несколько микроампер, в режиме работы примерно 8 мА в основном за счет свечения светодиода.

Полицейский проблесковый маячок

Эта схема имитирует огни полицейского проблескового маячка. В результате работы устройства, чередуется мигание красных и синих светодиодов, причем каждый цвет мигает по три раза.

Генератор тактовых импульсов для счетчика К561ИЕ8 построен на таймере NE555. Ширина этих импульсов может быть изменена путем подбора сопротивлений R1, R2 и емкости C2. Импульсы с выхода счетчика, через диоды, поступают на два транзисторных ключа, которые управляют миганием светодиодов.

Микросхемы счётчики

Всем доброго времени суток! Сегодня буду рассказывать про счётчики, но не электрические или газовые, а про цифровые микросхемы счётчики. Счётчики являются, как и регистры, производными от триггеров, но в отличие от микросхем регистров, в микросхемах счётчиках связи между триггерами значительно сложнее и в результате функционал их больше, чем регистров.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Из самого названия данного типа цифровых микросхем понятно, что они занимаются подсчётом импульсов пришедших на их входы. То есть каждый пришедший импульс на вход счётчика увеличивает или уменьшает двоичный код на его выходах. Счётчики могут работать в различных режимах, которые определяется связями внутренних триггеров. Режим, в котором идёт увеличение выходного кода, называют режимом прямого счёта, а если идёт уменьшение выходного кода, то это режим обратного или инверсного счёта. Счётчики предназначены также для преобразования из двоичной системы счисления в десятичную систему, но существуют и другие типы счётчиков, например счётчики-делители, у которых на выходе частота импульсов в некоторое количество раз меньше частоты входных импульсов. Для микросхем счётчиков в стандартных сериях существует специальный суффикс ИЕ, например К555ИЕ19, К155ИЕ2.

Все типы счётчиков можно разделить на три основные группы, которые различаются быстродействием:

  • асинхронные (или последовательные) счётчики;
  • синхронные счётчики с асинхронным переносом (или параллельные счётчики с последовательным переносом);
  • синхронные (или параллельные) счётчики.

Асинхронные счётчики

Данные типы счётчиков состоят из цепочёк JK-триггеров, которые работают в счётном режиме, когда выход предыдущего триггера служит входом для следующего. В такой схеме триггеры включаются последовательно, а, следовательно, и выходы счётчика также переключаются последовательно, один за другим (отсюда второе название асинхронных счётчиков – последовательные счётчики). Так как переключение разрядов происходит с некоторой задержкой, поэтому и сигналы на выходах счётчика появляются не одновременно с входным сигналом и между собой, то есть асинхронно.

Микросхемы асинхронных счётчиков применяются не очень часто, в качестве примера можно привести микросхемы типа ИЕ2 (четырёхразрядный двоично-десятичный счётчик), ИЕ5 (четырёх разрядный двоичный счётчик) и ИЕ19 (сдвоенный четырёхразрядный счётчик).

асинхронные счётчики

Асинхронные счётчики: слева направо ИЕ2, ИЕ5, ИЕ19.

Данные типы счётчиков имеют входы сброса в нуль (вход R), вход установки в 9 (вход S у ИЕ2), счётный или тактовый вход (вход С) и выходы, которые могут обозначаться как номера разрядов (0, 1, 2, 4) или как вес каждого разряда (1, 2, 4, 8).

Читайте так же:
Счетчик для сайта без рекламы

Микросхема К555ИЕ2 относится к двоично-десятичным счётчикам, то есть счёт у неё идет от 1 до 9, а потом выводы обнуляются и счёт идёт сначала. Внутренне данный счётчик состоит из четырёх триггеров, которые разделены на две группы: один триггер (вход С1, выход 1) и три триггера (вход С2, выходы 2, 4, 8). Такая внутренняя организация позволяет значительно расширить применение данного типа микросхемы, например данную микросхему можно использовать в качестве делителя на 2, на 5 или на 10. Счётчик ИЕ2 имеет два входа для сброса в нуль объединенных по И, а так же два входа для установки в 9 тоже объединённых по И.

Для реализации счёта необходимо сбросить счётчик подачей на входы R высокого логического уровня, а на один из входов S сигнал низкого уровня. В таком режиме счётчик будет «обнулён» и последовательный счёт заблокирован. Чтобы восстановить функцию счета необходимо установить на входы R низкий уровень сигнала.

Для организации делителя на 2 необходимо подавать сигнал на С1, а снимать с выхода 1; делитель на 5 подавать сигнал на С2, а снимать с выхода 8; делитель на 10 выход 8 соединяют с С1, сигнал подают на С2, а снимают с выхода 1.

Микросхема К555ИЕ5 представляет собой двоичный счётчик, в отличие от ИЕ2 считает до 16 и сбрасывается в нуль. Также как и ИЕ2 состоит из двух групп триггеров со входами С1 и С2, а выходы 1 и 2,4,8. В отличии от ИЕ2 имеет только два входа сброса в нуль, а входов установки нет.

Микросхема К555ИЕ19 практически идентична двум микросхемам К555ИЕ5 и представляет собой два чётырёхразрядных двоичных счётчика, каждый счётчик имеет свой счётный вход С и вход сброса R. Если объединить выход 8 первого счётчика и вход С второго счётчика, то можно получить восьмиразрядный двоичный счётчик.

Синхронные счётчики с асинхронным переносом

Синхронные счётчики в отличие от асинхронных переключение разрядов идёт без задержки, то есть параллельно. Эта параллельность достигается за счёт более сложной внутренней связи между триггерами. Но также это привело к тому, что управлять данными счётчиками несколько сложнее, чем асинхронными. Зато возможностей у синхронных счётчиков значительно больше. Для увеличения разрядности синхронных счётчиков в данных типах счётчиков используется специальные выходы. От принципа формирования сигнала на этих выходах синхронные счётчики делятся на счётчики с асинхронным (последовательным) переносом и счётчики с синхронным (параллельным) переносом.

Основная суть работы синхронных счётчиков с асинхронным переносом заключается в следующем: переключение разрядов осуществляется одновременно, а сигнал переноса вырабатывается с некоторой задержкой. Быстродействие данных счётчиков выше, чем асинхронных, но ниже чем чисто синхронных. Типичными представителями синхронных счётчиков с асинхронным переносом являются микросхемы К555ИЕ6 и К555ИЕ7.

Синхронные счётчики с асинхронным переносом

Синхронные счётчики с асинхронным переносом: слева направо ИЕ6, ИЕ7.

Микросхемы ИЕ6 и ИЕ7 полностью одинаковы различие заключается в том, что ИЕ6 является двоично-десятичным счётчиком, а ИЕ7 – полностью двоичным. Данные счётчики являются реверсивными, то есть могут работать как на увеличения числа, так и на уменьшение, для этого они имеют счётные входы: +1 (увеличение по положительному фронту) и -1 (уменьшение по положительному фронту). Для выхода сигнала переноса при прямом счёте используется выход CR, а при обратном счёте вывод BR. Вход R является входом обнуления счётчика. Также есть возможность предварительной установки выходного кода параллельным переносом с входов D1, D2, D4, D8 при низком логическом уровне на входе WR.

После сброса счётчик начинает считать с нуля, либо с числа, которое установлено параллельным переносом. Двоично-десятичный счётчик считает до десяти, потом обнуляется и вырабатывает сигнал переноса на выходе CR или BR при обратном счёте. Двоичный счётчик же считает до 15 и происходит обнуление.

Синхронные счётчики с асинхронным переносом нашли более широкое применение, чем асинхронные счётчики: делители частоты, подсчёт импульсов, измерение интервалов времени, формировать последовательности импульсов и другое.

Синхронные счётчики

Данные типы счётчиков являются наиболее быстродействующими, однако это обуславливает самое сложное управление среди всех типов счётчиков. Одной из особенностей синхронных счётчиков является то, что сигнал переноса вырабатывается тогда, когда все выходы счётчика устанавливаются в единицу (при прямом счёте) или в нуль (при обратном). Также при включении нескольких счётчиков для увеличения разрядности, тактовые входы С объединяются, а сигнал переноса подается на вход разрешения счёта каждого последующего счётчика.

В серии микросхем входят несколько типов синхронных счётчиков, которые различаются способом счёта (двоичные или двоично-десятичные, реверсивные или нереверсивные) и управляющими сигналами (отсутствие или наличие сигнала сброса). Все счётчики данного типа имеют входы переноса и каскадирования.

Синхронные счётчики
Синхронные счётчики: слева направо ИЕ9(ИЕ10) и ИЕ12(ИЕ13).

Микросхемы К555ИЕ9 (ИЕ10) микросхемы различаются способом счёта ИЕ9 – двоично-десятичная, а ИЕ10 – двоичная. Данные микросхемы имеют счётный вход С, вход сброса R в нуль выходных выводов. Имеется возможность предварительной установки при нулевом уровне напряжения на входе разрешения предварительной установи EWR, вход Е0 – разрешение переноса и вход Е1 – разрешения счёта. Сигнал на выходе CR (сигнал переноса) вырабатывается при достижении максимального счёта и высоком уровне на входе Е0. Для работы счётчика должны быть высокие логические уровни на входах EWR, Е0 и Е1.

Микросхемы К555ИЕ12 (ИЕ13) также имеют одинаковое схемотехническое устройство и различаются способом счёта ИЕ12 – двоично-десятичный счётчик, а ИЕ13 – десятичный. Данные типы счётчиков реверсивные и допускают как прямой счёт, установкой нулевого уровня на входе Е0, так и обратный счёт, установкой высокого логического уровня на Е0, в остальном же входные и выходные выводы идентичны ИЕ9 и ИЕ10.

Синхронные счётчики нашли самое широкое применение в цифровых устройствах, так они могут полностью заменить функционал асинхронных и синхронных с асинхронным переносом счётчиков и к тому же имеют самое высокое быстродействие среди счётчиков.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector