Berezka7km.ru

Березка 7км
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Презентация на тему Применение теплового действия электрического тока

Презентация на тему Применение теплового действия электрического тока

Презентация на тему Презентация на тему Применение теплового действия электрического тока из раздела Физика. Доклад-презентацию можно скачать по ссылке внизу страницы. Эта презентация для класса содержит 14 слайдов. Для просмотра воспользуйтесь удобным проигрывателем, если материал оказался полезным для Вас — поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций TheSlide.ru в закладки!

  • Главная
  • Физика
  • Применение теплового действия электрического тока

Слайды и текст этой презентации

Тема: Применение теплового действия электрического тока.Цель: Примеры использования тепловых действий электрического тока. Расчет расхода электрической энергии..

Тема: Применение теплового действия электрического тока.

Цель: Примеры использования тепловых действий электрического тока. Расчет расхода электрической энергии..

План урока:

План урока:
I.Повторение изученного

В чем проявляется тепловое действие тока? При каких условиях оно наблюдается?
— При прохождении тока по проводнику она нагревается и, удлинившись, слегка провисает.. В электрических лампах тонкая вольфрамовая проволочка нагревается током до яркого свечения.

Почему при прохождении тока проводник нагревается?
— В проводнике при протекании тока происходит превращение электрической энергии во внутреннюю, и проводник нагревается.

Почему, когда по проводнику пропускают электрический ток, проводник удлиняется?
— При нагревании проводника увеличивается потенциальная энергия взаимодействия молекул тела; расстояние между молекулами возрастает, проводник удлиняется.

4) По какой формуле можно рассчитать кол-во теплоты, выделяемой проводником с током?- Q = I² R T 5)Как

4) По какой формуле можно рассчитать кол-во теплоты, выделяемой проводником с током?
— Q = I² R T

5)Как формулируется закон Джоуля-Ленца?
— Кол-во теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени.
6) Две проволоки одинаковой длины и сечения – железная и медная – соединены параллельно. В какой из них выделится наибольшее кол-во теплоты?

— Т.к. кол-во теплоты, выделяемое проводником, зависит от сопротивления, а сопротивление определяется удельным сопротивлением:

Проводники соединены параллельно, то U1 = U2
Q = , чем больше R1, тем меньше Q, следовательно, на медном проводнике выделяется больше теплоты.

II.История и развитие электрического тока.История электрического освещения началась в 1870 году с изобретения лампы накаливания, в которой

II.История и развитие электрического тока.

История электрического освещения началась в 1870 году с изобретения лампы накаливания, в которой свет вырабатывался в результате поступления электрического тока. Самые первые осветительные приборы, работающие на электрическом токе, появились в начале 19 века, когда было открыто электричество. Эти лампы были достаточно неудобны, но, тем не менее, их использовали при освещении улиц.
И, наконец, 12 декабря 1876 года русский инженер Павел Яблочков открыл так называемую «Электрическую свечу», в которой 2 угольные пластинки, разделенные фарфоровой вставкой, служили проводником электричества, накалявшего дугу, и служившую источником света. Лампа Яблочкова нашла широчайшее применение при освещении улиц крупных городов.

III.«Потребители электрической энергии» а) устройство лампы накаливания; 1) Спираль2) Стеклянный баллон3) Цоколь лампы4) Основание цоколя5) Пружинящий контакт патрона

III.«Потребители электрической энергии»

а) устройство лампы накаливания;

1) Спираль
2) Стеклянный баллон
3) Цоколь лампы
4) Основание цоколя
5) Пружинящий контакт патрона

Нагревательный элемент – это основная часть всякого нагревательного электрического прибора.Энергосберегающая лампаГазоразрядная лампочка светиться под действием коротковолнового излучения.

Нагревательный элемент – это основная часть всякого нагревательного электрического прибора.

Газоразрядная лампочка светиться под действием коротковолнового излучения.

б) Различные потребители электрической энергии

б) Различные потребители электрической энергии

VI.Формулы расчета стоимости электрической энергии А=PtСтоимость = А(кВт*ч) х ТарифА работа тока Р мощность тока t время

VI.Формулы расчета стоимости электрической энергии
А=Pt
Стоимость = А(кВт*ч) х Тариф
А работа тока
Р мощность тока
t время работы потребителя

V. КЛЛ- компактная люминесцентная лампаЯ рассчитал экономию израсходованной электроэнергии и стоимость её при использование КЛЛ в своей

V. КЛЛ- компактная люминесцентная лампа

Я рассчитал экономию израсходованной электроэнергии и стоимость её при использование КЛЛ в своей комнате
W= 150*12*30 =54 кВт ч – за месяц
Ст.= 54*2,81= 151,74 (руб.) оплата в месяц за лампу накаливания
W= 20*12*30 = 7,2 кВт ч если энергосберегающая лампа
Ст.=7,2*2,81=20,23 (руб.) оплата в месяц за энергосберегающую лампу
Ст.= 151,74-20,23=131,51 (руб.)
Ст.=131,51*2=263,02 (руб.) экономия так как в моей комнате 2 КЛЛ
Таким образом, получается, что энергосберегающая компактная люминесцентная лампа, несмотря на высокую стоимость, экономичнее, чем дешевая лампа накаливания.

VI. Практическое исследование P1=100Вт=0,1кВт- лампа накаливания P2= 20Вт = 0,02 кВт- энергосберегающая лампа За месяц (30 дней

VI. Практическое исследование

P1=100Вт=0,1кВт- лампа накаливания
P2= 20Вт = 0,02 кВт- энергосберегающая лампа

За месяц (30 дней )
Ст1. = 0,1кВт*180 час*2,81 руб= 50,58 руб.
Ст2. = 0,02кВт*180час*2,81руб.=10,16 руб.
Экономия электроэнергии 18 кВт- 3,6кВт =14,4 кВт

За год
Ст1.= 0,1 кВт*2190 час*2,81 руб.= 615,39руб.
Ст2.= 0,02 кВт*2190 час*2,81 руб. = 123,08 руб.

Экономия электроэнергии: 219 кВт – 43,8 кВт= 175 кВт
Затраты с учётом стоимости лампочек :с энергосберегающей лампочкой экономия составила 492,3 руб.

VII. Энергосбережение – одна из приоритетных

VII. Энергосбережение – одна из приоритетных задач. Это связано с дефицитом основных энергоресурсов, возрастающей стоимостью их добычи, а также с экологическими проблемами.

23 ноября 2009 года президент Российской Федерации Д.А.Медведев подписал федеральный закон № 262-Ф3 «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты РФ»

Что проходит в нашей школе по энергосбережению?В нашем лицеи используются энергосберегающие люминесцентные лампыНа классных часах проводятся краткий

Что проходит в нашей школе по энергосбережению?
В нашем лицеи используются энергосберегающие люминесцентные лампы
На классных часах проводятся краткий инструктаж по энергосбережению
Нагревательные приборы используются рационально

Возможности энергосбережения в школе (лицеи)
Основные возможности энергосбережения зависящие от нас, учеников – это экономия электроэнергии и тепла
Пользоваться электрическим светом, только по необходимости
В кабинетах не «гонять» компьютер с утра до вечера
Сохранять тепло помогает оклейка и утепление окон.
Следить, чтобы двери и окна были плотно закрыты
Открыть жалюзи в кабинетах иначе лампочки в кабинетах горят целый день
В коридорах горит свет во время уроков

Читайте так же:
Тепловые реле ртл ток срабатывания

Возможности энергосбережения в своём доме.Заменить лампы накаливания на современные энергосберегающие лампыВыключать неиспользуемые приборы из сети (телевизор, видеомагнитофон,

Возможности энергосбережения в своём доме.
Заменить лампы накаливания на современные энергосберегающие лампы
Выключать неиспользуемые приборы из сети (телевизор, видеомагнитофон, музыкальный центр)
Стирать в стиральной машине при полной загрузки и правильно выбирать режим стирки
Своевременно удалять из электрочайника накипь
Не пересушивать бельё это даёт экономию при глажке
Чаще менять мешки для сбора пыли в пылесосе
Ставить холодильник в самое прохладное место на кухне
Использовать светлые шторы, обои
Чаще мыть окна, на подоконники ставить небольшое количество цветов
Не закрывать плотными шторами батареи отопления

VIII. Закрепление изученного материала. Обсудить решение нескольких задач:Спираль электрической плиты укоротили. Как измениться количество выделяемой

VIII. Закрепление изученного материала. Обсудить решение нескольких задач:

Спираль электрической плиты укоротили. Как измениться количество выделяемой в ней теплоты, если плитку включить в тоже напряжение.
Какое количество теплоты выделится в течении часа в проводнике сопротивление 10 Ом при силе тока в 2 А?
Определите количество теплоты которое дает электроприбор мощностью 2 кВт за 10 мин работы.

Самостоятельная работа №22.ЗАКОН ДЖОУЛЯ-ЛЕНЦА 1. Приведите примеры использования теплового действия тока в быту. 2. В чем проявляется тепловое действие тока? При каких условиях оно наблюдается? 3. Почему при прохождении тока проводник нагревается? 4. Почему, когда по проводнику пропускают электрический ток, проводник удлиняется? 5. В чем причина короткого замыкания? К чему оно приводит в электрической цепи? 6. Последовательно соединенные медная и железная проволоки одинаковой длины и сечения подключены к аккумулятору. В какой из них выделится большее количество теплоты за одинаковое время? Средний уровень 1. Сколько теплоты выделится в электрическом нагревателе в течение 2 мин, если его сопротивление 20 Ом, а сила тока в цепи 6 А? 2. Какое количество теплоты выделится в нити электрической лампы в течение 1 ч, если лампа потребляет ток силой 1 А при напряжении 110 В? 3. В спирали электроплитки, включенной в розетку с напряжением 220 В, при силе тока 3,5 А выделилось 690 кДж теплоты. Сколько времени была включена в сеть плитка? 4. Сколько теплоты выделится за 1 ч в реостате, сопротивление которого 100 Ом, при силе тока в цепи 2 А? 5. Электрическая печь для плавки металла потребляет ток 800 А при напряжении 60 В. Сколько теплоты выделяется в печи за 1 мин? 6. Определите количество теплоты, выделяемое в проводнике током за 1,5 мин, если сила тока в цепи равна 5 А, а напряжение на концах проводника 200 В. Достаточный уровень 1. Два резистора сопротивлением 6 Ом и 10 Ом включены в цепь последовательно. Какое количество теплоты выделится в каждом резисторе за 2 мин, если напряжение на втором равно 20 В? 2. Два резистора сопротивлением 3 Ом и 6 Ом включены в цепь параллельно. В первом течет ток силой 2 А. Какое количество теплоты выделится обоими резисторами за 10 с? 3. Три проводника соединены последовательно. Первый имеет сопротивление 2 Ом, второй — 6 Ом, а в третьем за 1 мин выделилось 2,4 кДж теплоты. Каково сопротивление третьего проводника, если напряжение на втором равно 12В? 4. Два проводника соединены параллельно. В первом за 1 мин выделилось 3,6 кДж теплоты, а во втором за то же время — 1,2 кДж. Вычислите сопротивление второго проводника, если сопротивление первого равно 2 Ом. 5. Сколько теплоты выделится за 40 мин в медных проводниках с поперечным сечением 1,5 мм2 и длиной 3 м, подводящих электрический ток к плитке, если сила тока в спирали 5 А?

1) утюг, электроплита, плойка. 2) нагревании предметов. 3) увеличивается скорость молекул в проводнике, следовательно увеличивается число сооударений и его энергия, а отсюда и температура..4) нагревание даёт увеличение в размере5) перегрузка, большее напряжение, чем можно, что приводит к перегоранию приборов, порче проводки. 6) в той, у которой удельное сопротивление меньше1). потом. нет желания. решается по формуле Джоуля-Ленца2) Q = IUt = 1*110*36003)t = Q/(IU) = 690000/(220*3,5).

Также наши пользователи интересуются:

⭐⭐⭐⭐⭐ Лучший ответ на вопрос «Самостоятельная работа №22.ЗАКОН ДЖОУЛЯ-ЛЕНЦА 1. Приведите примеры использования теплового действия тока в быту. 2. В чем проявляется тепловое действие тока? При каких условиях оно наблюдается? 3. Почему при прохождении тока проводник нагревается? 4. Почему, когда по проводнику пропускают электрический ток, проводник удлиняется? 5. В чем причина короткого замыкания? К чему оно приводит в электрической цепи? 6. Последовательно соединенные медная и железная проволоки одинаковой длины и сечения подключены к аккумулятору. В какой из них выделится большее количество теплоты за одинаковое время? Средний уровень 1. Сколько теплоты выделится в электрическом нагревателе в течение 2 мин, если его сопротивление 20 Ом, а сила тока в цепи 6 А? 2. Какое количество теплоты выделится в нити электрической лампы в течение 1 ч, если лампа потребляет ток силой 1 А при напряжении 110 В? 3. В спирали электроплитки, включенной в розетку с напряжением 220 В, при силе тока 3,5 А выделилось 690 кДж теплоты. Сколько времени была включена в сеть плитка? 4. Сколько теплоты выделится за 1 ч в реостате, сопротивление которого 100 Ом, при силе тока в цепи 2 А? 5. Электрическая печь для плавки металла потребляет ток 800 А при напряжении 60 В. Сколько теплоты выделяется в печи за 1 мин? 6. Определите количество теплоты, выделяемое в проводнике током за 1,5 мин, если сила тока в цепи равна 5 А, а напряжение на концах проводника 200 В. Достаточный уровень 1. Два резистора сопротивлением 6 Ом и 10 Ом включены в цепь последовательно. Какое количество теплоты выделится в каждом резисторе за 2 мин, если напряжение на втором равно 20 В? 2. Два резистора сопротивлением 3 Ом и 6 Ом включены в цепь параллельно. В первом течет ток силой 2 А. Какое количество теплоты выделится обоими резисторами за 10 с? 3. Три проводника соединены последовательно. Первый имеет сопротивление 2 Ом, второй — 6 Ом, а в третьем за 1 мин выделилось 2,4 кДж теплоты. Каково сопротивление третьего проводника, если напряжение на втором равно 12В? 4. Два проводника соединены параллельно. В первом за 1 мин выделилось 3,6 кДж теплоты, а во втором за то же время — 1,2 кДж. Вычислите сопротивление второго проводника, если сопротивление первого равно 2 Ом. 5. Сколько теплоты выделится за 40 мин в медных проводниках с поперечным сечением 1,5 мм2 и длиной 3 м, подводящих электрический ток к плитке, если сила тока в спирали 5 А?» от пользователя АМИНА ГРИЩЕНКО в разделе Физика. Задавайте вопросы и делитесь своими знаниями.

Читайте так же:
Напряжение тока в тепловых насосах

12 примеров тепловой энергии в повседневной жизни

Тепловая энергия относится к энергии, которой обладает объект в результате движения частиц внутри объекта. Это внутренняя кинетическая энергия объекта, которая исходит от случайных движений молекул и атомов объекта.

В то время как молекулы и атомы, составляющие материю, постоянно движутся, когда объект нагревается, повышение температуры заставляет эти частицы двигаться быстрее и сталкиваться друг с другом. Чем быстрее движутся эти частицы, тем выше тепловая энергия объекта.

Она может быть записана математически как произведение постоянной Больцмана (k B) и абсолютной температуры (T).

Тепловая энергия = k B T

Термин «тепловая энергия» может также применяться к количеству передаваемого тепла или энергии, переносимой тепловым потоком.

Тепловая энергия (или термическая энергия) может передаваться от одного тела другому через три процесса —

  • Проводимость: это наиболее распространенная форма теплопередачи, которая происходит через физический контакт: передача внутренней энергии за счет микроскопических столкновений частиц и движения электронов внутри тела. : представляет собой передачу тепла из одной области в другую в результате движения жидкостей, например, жидкостей и газов.
  • Излучение — это передача энергии в виде частиц или волн через пространство или среду. Чем горячее объект, тем больше он будет излучать тепловой энергии.

Чтобы лучше объяснить это явление, мы собрали некоторые из лучших примеров тепловой энергии, которые вы видите в повседневной жизни.

12. Солнечная энергия

Тип теплопередачи: Излучение

Солнце — это почти идеальная сфера горячей плазмы, которая преобразует водород в гелий посредством миллиардов химических реакций, которые в конечном итоге производят интенсивное количество тепла.

Вместо того, чтобы находиться рядом с Солнцем, тепло излучается вдаль от звезды и в космос. Небольшая часть этой энергии (тепла) достигает Земли в виде света. В основном она содержит инфракрасный, видимый и ультрафиолетовый свет. Передача тепловой энергии таким образом называется тепловым излучением.

В то время как часть тепловой энергии проникает в атмосферу Земли и достигает земли, часть ее блокируется облаками или отражается от других объектов. Солнечный свет, достигающий поверхности Земли, нагревает ее.

По данным Университета Орегона, вся Земля получает в среднем 164 Ватта на квадратный метр в течение суток. Это означает, что вся планета получает 84 тераватта энергии.

11. Тающий лед

Тип теплопередачи: Конвекция

Тепловая энергия всегда течет из регионов с более высокой температурой в регионы с более низкой температурой. Например, когда вы добавляете к напитку кубики льда, тепло переходит из жидкости в кубики льда.

Температура жидкости падает по мере того, как тепло переходит от напитка к льду. Тепло продолжает перемещаться в самую холодную область напитка до тех пор, пока не достигнет равновесия. Потеря тепла приводит к падению температуры напитка.

10. Топливные элементы

Топливный элемент, который принимает водород и кислород в качестве входных данных

Теплопередача: зависит от типа топливного элемента

Топливные элементы — это электрохимические устройства, которые преобразуют химическую энергию топлива и окислителя в электрическую энергию. При работе топливного элемента значительная часть входной энергии используется для выработки электрической энергии, а оставшаяся часть преобразуется в тепловую энергию в зависимости от типа топливного элемента.

Читайте так же:
Мощность тепловых потерь в источнике тока

Тепло, получаемое в ходе этого процесса, используется для повышения энергоэффективности. Теоретически топливные элементы являются гораздо более энергоэффективными, чем обычные процессы: если отработанное тепло улавливается в когенерационной схеме, эффективность может достигать 90%.

9. Геотермальная энергия

Тип теплопередачи: мантийная конвекция

Геотермальная энергия — это тепло, получаемое в недрах Земли. Оно содержится в жидкостях и породах под земной корой и может быть найдено глубоко в горячей расплавленной породе Земли — магме.

Она образуется в результате радиоактивного распада материалов и непрерывной потери тепла от формирования планеты. Температура и давление на границе ядра и мантии могут достигать более 4000°C и 139 ГПа, в результате чего некоторые породы расплавляются, а твердая мантия ведет себя пластически.

Это приводит к тому, что части мантии конвектируются вверх (так как расплавленная порода легче, чем окружающие твердые породы). Пар и/или вода переносят геотермальную энергию на поверхность планеты, откуда она может быть использована для охлаждения и обогрева, или может быть использована для производства чистого электричества.

8. Тепловая энергия в океане

Тип теплопередачи: Конвекция и Проводимость

На протяжении десятилетий океаны поглощали более 9/10 избыточного тепла атмосферы от выбросов парниковых газов. Согласно исследованию, океан нагревается со скоростью 0,5-1 ватт энергии на квадратный метр в течение последних десяти лет.

Океаны обладают невероятным потенциалом для хранения тепловой энергии. Поскольку их поверхности подвергаются воздействию прямых солнечных лучей в течение длительных периодов времени, существует огромная разница между температурами мелководных и глубоководных морских районов.

Эта разница температур может быть использована для запуска теплового двигателя и выработки электроэнергии. Этот тип преобразования энергии, известный как преобразование тепловой энергии океана, может работать непрерывно и может поддерживать различные побочные отрасли.

7. Солнечная плита

Тип теплопередачи: излучение и проводимость

Солнечная плита — это низкотехнологичное, недорогое устройство, использующее энергию прямых солнечных лучей для нагрева, приготовления или пастеризации напитков и других пищевых материалов. В солнечный день она может достигать температуры до 400°C.

Все солнечные плиты работают по трем основным принципам:

  • Концентрат солнечного света : устройство имеет зеркальную поверхность для концентрации солнечного света в небольшой зоне для приготовления пищи.
  • Преобразование световой энергии в тепловую энергию. Когда свет падает на материал приемника (кастрюлю), он преобразует свет в тепло, и это мы называем проводимостью.
  • Ловушка тепловой энергии : стеклянная крышка изолирует воздух внутри плиты от наружного воздуха, сводя к минимуму конвекцию (потери тепла).

6. Потирая руку

Тип теплопередачи: Проводимость

Когда вы потираете руки, трение превращает механическую энергию в тепловую. Механическая энергия относится к движению ваших рук.

Поскольку трение происходит за счет электромагнитного притяжения между заряженными частицами на двух соприкасающихся поверхностях, трение рук друг о друга приводит к обмену электромагнитной энергией между молекулами наших рук. Это приводит к тепловому возбуждению молекул наших рук, которые в конечном итоге вырабатывают энергию в виде тепла.

5. Тепловой двигатель

Тип теплопередачи: Конвекция

Тепловой двигатель преобразует тепловую энергию в механическую энергию, которую затем можно использовать для выполнения механической работы. Двигатель забирает энергию из тепла (по сравнению с окружающей средой) и превращает ее в движение.

В зависимости от типа двигателя применяются разные процессы, такие как использование энергии ядерных процессов для выработки тепла (уран) или воспламенение топлива в результате сгорания (уголь или бензин). Во всех процессах цель одна и та же: преобразовать тепло в работу.

Ежедневные примеры тепловых двигателей включают паровоз, двигатель внутреннего сгорания и тепловую электростанцию. Все они приводятся в действие расширением нагретых газов.

4. Горящая свеча

Тип теплопередачи: Проводимость, Конвекция, Излучение

Свечи делают свет, производя тепло. Они преобразуют химическую энергию в тепло. Химическая реакция называется сгоранием, при котором воск свечи вступает в реакцию с кислородом на воздухе и образует бесцветный газ, называемый углекислым газом, вместе с небольшим количеством пара.

Пар образуется в синей части пламени, где воск горит чисто с большим количеством кислорода. Но поскольку ни один воск не горит идеально, они также производят немного дыма (аэрозоль) в яркой, желтой части пламени.

На протяжении всего процесса фитиль поглощает воск и горит, чтобы произвести свет и тепловую энергию.

3. Электрические тостеры

Тип теплопередачи: тепловое излучение

Электрический тостер забирает электрическую энергию и очень эффективно преобразует ее в тепло. Он состоит из рядов тонких проволок (нитей), которые расположены достаточно широко друг от друга, чтобы поджарить всю поверхность хлеба.

Когда электричество течет по проводу, энергия передается от одного конца к другому. Эта энергия переносится электронами. На протяжении всего процесса электроны сталкиваются друг с другом и с атомами в металлической проволоке, выделяя тепло. Чем больше электрический ток и чем тоньше провод, тем больше происходит столкновений и выделяется больше тепла.

Читайте так же:
Тепловое действие электрического тока закон джоуля ленца конспект урока

2. Современные системы отопления дома

Тип теплопередачи: Конвекция

Два распространенных типа отопительных систем, установленных в зданиях, — это системы отопления теплым воздухом и горячей водой. Первая использует тепловую энергию для нагрева воздуха, а затем циркулирует по системе воздуховодов и регистров. Теплый воздух выдувается из воздуховодов и циркулирует по помещениям, вытесняя холодный воздух.

Второй использует тепловую энергию для нагрева воды, а затем прокачивает ее по всему зданию в системе труб и радиаторов. Горячий радиатор излучает тепловую энергию в окружающий воздух. Затем теплый воздух движется по помещениям конвекционными потоками.

1. Процессоры и другие электрические компоненты

Тип теплопередачи: Конвекция и Проводимость

Процессор, графический процессор и система на чипе рассеивают энергию в виде тепла за счет сопротивления в электронных схемах. Графические процессоры в ноутбуках/настольных компьютерах потребляют и рассеивают значительно больше энергии, чем мобильные процессоры из-за их более высокой сложности и скорости.

Для поддержания оптимальной температуры микропроцессоров используются различные типы систем охлаждения. Например, обычная настольная система охлаждения ЦП предназначена для рассеивания до 90 Вт тепла без превышения максимальной температуры соединения для ЦП настольного компьютера.

Какими явлениями сопровождается электрический ток?

электрический ток

Наличие тока в электроцепи всегда проявляется каким-либо действием. Например, работа при конкретной нагрузке или какое-то сопутствующее явление. Следовательно, именно действие электротока говорит о его присутствии как таковом в той или иной электроцепи. То есть, если работает нагрузка, то ток имеет место быть.

Известно, что электрический ток вызывает различного рода действия. Например, к таковым относятся тепловые, химические, магнитные, механические или световые. При этом различные действия электрического тока способны проявлять себя одновременно. Более подробно о всех проявлениях мы расскажем Вам в данном материале.

Тепловое явление

Известно, что температура проводника повышается при прохождении через него тока. В качестве таких проводников выступают различные металлы или их расплавы, полуметаллы или полупроводники, а также электролиты и плазма. Например, при пропускании через проволоку из нихрома электрического тока происходит ее сильное нагревание. Данное явление используют в приборах нагрева, а именно: в электрических чайниках, кипятильниках, обогревателях и т.п. Электродуговая сварка отличается самой большой температурой, а именно нагрев электродуги может достигать до 7 000 градусов по Цельсию. При такой температуре достигается легкое расплавление металла.

Количество выделяемой теплоты напрямую зависит от того, какое напряжение было приложено к данному участку, а также от электротока и времени его прохождения по цепи.

Для расчета объемов выделяемой теплоты используется или напряжение, или сила тока. При этом необходимо знание показателя сопротивления в электроцепи, поскольку именно оно провоцирует нагрев из-за ограничения тока. Также количество тепла можно определить при помощи тока и напряжения.

Химическое явление

Химическое действие электротока заключается в электролизе ионов в электролите. Анод при электролизе присоединяет к себе анионы, катод – катионы.

Иными словами, во время электролиза на электродах источника тока происходит выделение определенных веществ.

Приведем пример: в кислотный, щелочной или же солевой раствор опускаются два электрода. После пропускается по электроцепи ток, что провоцирует создание положительного заряда на одном из электродов, на другом – отрицательного. Ионы, которые находятся в растворе, откладываются на электроде с иным зарядом.

Химическое действие электротока применяется в промышленности. Так, используя данное явление, осуществляют разложение воды на кислород и водород. Кроме того, при помощи электролиза получают металлы в их чистом виде, а также осуществляют гальваническое покрытие поверхности.

Магнитное явление

Электрический ток в проводнике любого агрегатного состояния создает магнитное поле. Иными словами, проводник при электрическом токе наделяется магнитными свойствами.

Таким образом, если к проводнику, в котором протекает электроток, приблизить магнитную стрелку компаса, то та начнет поворачиваться и займет к проводнику перпендикулярное положение. Если же на сердечник из железа намотать данный проводник и пропустить сквозь него постоянный ток, то данный сердечник примет свойства электромагнита.

Природа магнитного поля всегда заключается в наличии электрического тока. Объясним: движущиеся заряды (заряженные частицы) образуют магнитное поле. При этом токи противоположного направления отталкиваются, а одинакового направления – притягиваются. Данное взаимодействие обосновано магнитным и механическим взаимодействием магнитных полей электротоков. Выходит, что магнитное взаимодействие токов первостепенно.

Магнитное действие применяется в трансформаторах и электромагнитах.

Световое явление

Самый простой пример светового действия – лампа накаливания. В данном источнике света спираль достигает нужной температурной величины посредством проходящего сквозь нее тока до состояния белого каления. Тем самым и излучается свет. В традиционной лампочке накаливания всего лишь пять процентов всей электроэнергии расходуется на свет, остальная же львиная доля преобразуется в тепло.

Читайте так же:
Какому закону подчиняется тепловое действие электрического тока

Более современные аналоги, например, люминесцентные лампы наиболее эффективно преобразуют электроэнергию в свет. То есть, около двадцати процентов всей энергии лежит в основе света. Люминофор принимает УФ-излучение, идущее от разряда, что возникает в ртутных парах или в инертных газах.

Самая эффективная реализация светового действия тока происходит в светодиодных источниках света. Электрический ток, проходя через pn-переход, провоцирует рекомбинацию носителей заряда с излучением фотонов. Лучшими led излучателями света являются прямозонные полупроводники. Изменяя состав данных полупроводников, возможно создание светодиодов для различных световых волн (разной длины и диапазона). Коэффициент полезного действия светодиода достигает 50 процентов.

Механическое явление

Напомним, что вокруг проводника с электрическим током возникает магнитное поле. Все магнитные действия преобразуются в движение. Примером служат электрические двигатели, магнитные подъемные установки, реле и др.

В 1820 году Андре Мари Ампер вывел известный всем «Закон Ампера», который как раз описывает механическое действие одного электротока на другой.

Данный закон гласит, что параллельные проводники с электрическим током одинакового направления испытывают притяжение друг другу, а противоположного направления, наоборот, отталкивание.

Также закон ампера определяет величину силы, с которой магнитное поле воздействует на небольшой отрезок проводника с электротоком. Именно данная сила лежит в основе функционирования электрического двигателя.

Приведите примеры использования тепловых действий тока?

Приведите примеры использования тепловых действий тока.

Электрические обогреватели, спираль в духовке, тепловая пушка и т.

Приведите примеры использования постоянных магнитов?

Приведите примеры использования постоянных магнитов.

Где используют тепловое и химическое действия тока?

Где используют тепловое и химическое действия тока.

Приведите примеры устройств использующих действие магнитного поля на ток?

Приведите примеры устройств использующих действие магнитного поля на ток.

Приведите примеры источников тепловой энергии?

Приведите примеры источников тепловой энергии.

Какие действия электрического тока позволяют судить о том если ли в цепи ток?

Какие действия электрического тока позволяют судить о том если ли в цепи ток?

Магнитное и тепловое Химическое и магнитное Любое из этих действия.

Примепы использования теплового действия тока в быту?

Примепы использования теплового действия тока в быту.

Приведите примеры тепловых явлений?

Приведите примеры тепловых явлений.

Как можно наблюдать на опыте тепловое действие тока?

Как можно наблюдать на опыте тепловое действие тока.

Приведите примеры использования магниьного действия тока?

Приведите примеры использования магниьного действия тока.

Назовите электрические устройства , работа которых основана на тепловом действии тока?

Назовите электрические устройства , работа которых основана на тепловом действии тока.

Вопрос Приведите примеры использования тепловых действий тока?, расположенный на этой странице сайта, относится к категории Физика и соответствует программе для 5 — 9 классов. Если ответ не удовлетворяет в полной мере, найдите с помощью автоматического поиска похожие вопросы, из этой же категории, или сформулируйте вопрос по-своему. Для этого ключевые фразы введите в строку поиска, нажав на кнопку, расположенную вверху страницы. Воспользуйтесь также подсказками посетителей, оставившими комментарии под вопросом.

Ответ : Постоянный электрический ток — это упорядоченное движение заряженных частиц под действием сил электрического поля или сторонних сил.

Закон сохранения импульсов система состоит из пули и винтовки, значит импульс пули равен импульсу винтовки (формула импульса тела P = mv(масса умноженная на скорость)) m1v1 = m2v2 m1 = 0. 01 кг v1 = 700м / с v2 = 1. 6 м / с Найти m2 0. 01 * 700 = ..

M = k * I * t t = m / k * I = 0, 18 / 0, 3 * 10 ^ — 7 * 40 = 15 * 10 ^ 4 c.

Дано : m2 = 2кг c = 4200 Дж / кг * C t2 = 50 C t1 = 14 C q = 30000000Дж / кг Найти : m1 — ? Решение : m1q = cm(t2 — t1) m1 * 30000000 = 4200 * 2 * 36 m1 = 4200 * 2 * 36 / 30000000 = 302400 / 30000000 = 0, 01кг.

15 мин. = 900 с. 307 см = 3. 07 с. 90 км / ч = 25 м / с 540 мл = 0. 54 л.

Дисперсия света– зависимость показателя преломления (скорости света) в среде от длины волны. Интерференция света– это сложение двух и более волн, вследствие которого наблюдается устойчивая картина усиления и ослабления световых колебаний в разных то..

M = 2 кг 1) горизонтальный участок — олово плавится, количество λ = 0, 59 10⁵ Дж / кг теплоты, нужное для плавления : Q = λm ; c = 230 Дж / кг°С Q = 0, 59 10⁵ * 2 = 1, 18 10⁵ Дж ; 2) график идет вниз — олово охлаждается от 232°С до 70°С, энергия при ..

Більше нагріється алюмінієва , а на скільки нажаль сказати не можу, так як потрібно дивитися в таблицю, якої в мене нажаль немає.

11. Дано : m = 1кг — масса c = 4200Дж — удельная теплоёмкость Δt = (t1 — t2) = 20° — 10° = 10° Найти : Q = ? Дж Решение : 1) Q = cmΔt Q = 1кг * 4200Дж * 10° = 42000Дж.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector