Berezka7km.ru

Березка 7км
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Приведите примеры использования теплового действия тока в быту технике

Приведите примеры использования теплового действия тока в быту технике

Электроток, проходящий по проводниковому элементу, за счет ударения свободных электронов об ионы и атомы нагревает его. Тепловое действие тока можно наблюдать во всех аспектах жизни человека: от работающих ламп накаливания и бытовых приборов до получения цветных металлов и добычи азота.

Самодельный нагревательный прибор с нихромовой спиралью, что нагревается под воздействием электротока

Самодельный нагревательный прибор с нихромовой спиралью, что нагревается под воздействием электротока

Тепловое действие электрического тока

Еще в девятнадцатом веке опыты по изучению проводимости свидетельствовали, что ток, проходящий по нагрузке, нагревает ее. Исследования показали, что нагревается не только нагрузка, но и проводники.

Тепловое действие электрического тока

Рис. 1. Тепловое действие электрического тока.

Данный факт легко объясним, если вспомнить, что электрический ток – это перемещение зарядов в веществе нагрузки. При движении заряды взаимодействуют с ионами кристаллической решетки, и отдают им часть энергии, которая и переходит в тепло.

Закон Джоуля-Ленца

Поскольку разность потенциалов (напряжение) на нагрузке равна работе, которую совершит единичный заряд, двигаясь по нагрузке, то для вычисления работы тока, необходимо напряжение умножить на заряд, прошедший через нагрузку. Заряд же равен произведению тока, проходящего по нагрузке, на время прохождения. Таким образом:

Детальным изучением теплового действия электрического тока в середине XIXв занимались независимо Д.Джоуль (Великобритания) и Э.Ленц (Россия).

Джоуль и Ленц

Рис. 2. Джоуль и Ленц.

Было выяснено, что если нагрузка неподвижна, то вся работа электрического тока в этой нагрузке перейдет в тепло:

Как правило, напряжение на элементах электрической цепи различно, а ток в ней общий. Поэтому для определения теплового действия удобнее выразить напряжение через ток, учитывая сопротивление:

То есть, количество тепла, образующееся в нагрузке, равно произведению значения тока в квадрате, сопротивления и времени. Этот вывод носит название Закона Джоуля-Ленца.

Иногда ток нагрузки неизвестен, но известно ее сопротивление и подводимое напряжение. В этом случае удобнее выразить ток через известные величины:

и, подставив в формулу выше, получаем:

Из данной формулы можно видеть интересный факт – если в нагревательной плите сгорит часть спирали, и мы просто исключим сгоревшие места, то сопротивление спирали уменьшится, а поскольку напряжение сети останется прежним, то тепло, выделяемое плитой, возрастет. Мощность плитки увеличится.

Практическое значение

Понятно, что количество выделяемого тепла зависит от плотности тока и проводимости определенного вещества. Наглядно соответствующие влияния можно регистрировать в ходе последовательного пропускания тока 2 и 50 А через контрольную медную жилу сечением 2 мм кв. Во втором эксперименте нагрев будет значительно сильнее. Его можно уменьшить, увеличив диаметр проводника.

Снижение потерь энергии

Рассмотренный пример демонстрирует нежелательное явление для линий электропередач. Использование части энергии на обогрев окружающего пространства увеличивает потери воздушных линий. Превышение порогового значения провоцирует разрушение жил, защитных оболочек. Чрезмерное повышение температуры – причина возникновения пожаров.

Подобные явления происходят, если выбрана чрезмерная сила тока, либо недостаточно поперечное сечение проводника. Количество тепла, выделяемого в линии, обратно пропорционально зависит от квадрата напряжения (U) на подключенном потребляющем устройстве. Повышением U можно уменьшить потери. Однако подобное действие увеличивает вероятность короткого замыкания, ухудшает общие параметры безопасности.

Выбор проводов для цепей

Отмеченные выше проблемы теплового разрушения в значительной мере зависят от удельного сопротивления (Rу). Для наглядности можно использовать материалы со значительно различающимися характеристиками.

Эксперимент с различными проводниками

Расчеты количества теплоты (Q, Дж) для образцов длиной 1 м сечением 1 мм кв. при силе тока 5А за 30 секунд:

  • медь – 12,75;
  • сталь – 75;
  • никелин – 315.

Особое внимание следует уделять параметрам силовых кабелей, которые должны сохранять целостность в процессе реальной эксплуатации. Как правило, бытовые линии монтируют в глубине строительных конструкций. Такой способ подразумевает хорошую защищенность от неблагоприятных внешних воздействий. Вместе с тем возрастают затраты на исправление ошибок и устранение последствий аварий.

Чтобы использовать кабельную продукцию правильно, следует руководствоваться тематическими нормативами, которые изложены в ПУЭ. Для упрощения выбора предлагаются специализированные таблицы, в которых приведены результаты расчетов с учетом следующих важных факторов:

  • тип изоляции;
  • длительность и величина перегрузок;
  • особенности прокладки.

Использование теплового действия электричества

Тепловое действие электрического тока находит широкое применение, в первую очередь, в нагревательных приборах.

Еще одним важным направлением использования теплового действия являются плавкие предохранители. Если необходимо отключить электрическую цепь при превышение допустимого тока, то в цепь можно включить плавкий предохранитель.

Устройство плавкого предохранителя

Рис. 3. Устройство плавкого предохранителя.

Это небольшая колба из негорючего материала, внутри которой проходит плавкая проволочка или лента, сопротивление которой рассчитано так, чтобы при превышении предельного тока она расплавилась, тем самым разорвав электрическую цепь.

Лампочка накаливания

Тепловое действие тока и открытие закона способствовали развитию электротехники и увеличению возможностей для использования электричества. То, как применяются результаты исследований, можно рассмотреть на примере обычной лампочки накаливания.

Она устроена таким образом, что внутри протягивается нить, изготовленная из вольфрамовой проволоки. Этот металл является тугоплавким с высоким удельным сопротивлением. При проходе через лампочку осуществляется тепловое действие электрического тока.

Энергия проводника трансформируется в тепловую, спираль нагревается и начинает светиться. Недостаток лампочки заключается в больших энергетических потерях, так как лишь за счет незначительной части энергии она начинает светиться. Основная же часть просто нагревается.

Чтобы лучше это понять, вводится коэффициент полезного действия, который демонстрирует эффективность работы и преобразования в электроэнергию. КПД и тепловое действие тока используются в разных областях, так как имеется множество устройств, изготовленных на основании этого принципа. В большей степени это нагревательные приборы, электрические плиты, кипятильники и другие подобные аппараты.

Использование теплового действия электрического тока в устройстве теплиц и инкубаторов

Электрический ток
Использование теплового действия электрического тока в устройстве теплиц и инкубаторов.

2. Тепловое действие электрического тока. Закон Джоуля-Ленца.

3. Использование теплового действия электрического тока в устройстве теплиц.

4. Использование теплового действия электрического тока в устройстве инкубаторов.

Читайте так же:
Выключатель теплого пола накладной

Современный мир уже немыслимо представить без электричества. Электрический ток используется человеком повсеместно. Бытовые электроприборы прочно заняли свое место в жилище человека, в промышленности, на транспорте и различных учреждениях тоже нельзя обойтись без использования электричества.

Однако сельские жители, особенно пожилого возраста по-прежнему продолжают относиться осторожно к использованию электрического тока.

Цель доклада: Показать, как можно использовать электрический ток для нужд сельского хозяйства.

Подобрать литературу по теме доклада

Анализ и обобщение источников литературы

Выступление с докладом перед аудиторией.

Тепловое действие электрического тока. Закон Джоуля-Ленца.

При прохождении электрического тока по проводнику в результате столкновений свободных электронов с его атомами и ионами проводник нагревается. Количество тепла, выделяемого в проводнике при прохождении электрического тока, определяется законом Джоуля — Ленца. Его формулируют следующим образом. Количество выделенного тепла Q равно произведению квадрата силы тока I2, сопротивления проводника R и времени t прохождения тока через проводник:

Количество тепла, выделяющегося в проводе, пропорционально объему провода и приращению температуры, а скорость отдачи тепла в окружающее пространство пропорциональна разности температур провода и окружающей среды.

В первое время после включения цепи разность температур провода и окружающей среды мала. Только небольшая часть тепла, выделяемого током, рассеивается в окружающую среду, а большая часть тепла остается в проводе и идет на его нагревание. Этим объясняется быстрый рост температуры провода в начальной стадии нагрева.

По мере увеличения температуры провода растет разность температур провода и окружающей среды, увеличивается количество тепла, отдаваемое проводом. В связи с этим рост температуры провода все более замедляется. Наконец, при некоторой температуре устанавливается тепловое равновесие: за одинаковое время количество теплоты выделяющегося в проводе становится равным количеству теплоты выделяющемуся во внешнюю среду.

Формула расчета и ее элементы

Суть явления понятна из упомянутого выше общего определения. Движущиеся электроны взаимодействуют с ионами вещества проводника с преобразованием механической энергии в теплоту. Увеличение силы тока повышает интенсивность процесса.

Наглядный пример – электролиз. При опускании в раствор подключенных к батарее пластин положительно заряженные ионы и электроны движутся в противоположных направлениях. Достаточно высокий ток провоцирует перемещение примесей с последующим осаждением на поверхности электродов. Одновременно происходит нагрев жидкости.

При подключении к источнику медного проводника химические реакции отсутствуют. Если исключить механические воздействия (электромагнитная индукция, движение ионов в растворе), вся работа тока в соответствующей цепи будет направлена только на увеличение внутренней энергии вещества.

Действие электрического тока при подключении к жидкому и металлическому проводнику

Следовательно, во втором примере работу (A) можно принять равной увеличению энергетического потенциала, который выражается соответствующим количеством теплоты (Q). Основная формула:

где:

  • U – напряжение;
  • I – ток;
  • t – время.

Для удобства расчетов можно использовать иные эквиваленты на основе формул закона Ома:

  • U = I * R;
  • R – электрическое сопротивление проводника;
  • значит, Q = I2 * R * t.

Примеры действия электрического тока

Как известно, увидеть движущиеся заряды (электроны, ионы) мы не можем, так как они очень малы. Но как тогда можно обнаружить электрический ток?

ДЕЙСТВИЯ ЭЛЕКТРИЧЕСКОГО ТОКА

При протекании электрического тока могут происходить различные явления, которые называются действиями электрического тока.

ТЕПЛОВОЕ ДЕЙСТВИЕ ТОКА

Электрический ток, протекая по проводам, вызывает их нагревание.

Присоединим к полюсам источника тока железную или никелевую проволоку. Замкнув ключ, можно наблюдать, как проволока провиснет, т. е. она нагреется и удлинится. Таким образом её можно даже раскалить докрасна.

Именно на тепловом действии тока основана работа различных бытовых нагревательных приборов, таких, как электрический чайник, электрические плитки, утюги и др. Нить лампочки раскаляется и начинает светиться.

ХИМИЧЕСКОЕ ДЕЙСТВИЕ ТОКА

Как показывает опыт, на электродах, опущенных в раствор электролитов, происходит выделение чистого вещества. Этот процесс называется электролизом. Например, пропуская ток через раствор медного купороса, можно выделить чистую медь.

Электрический ток в металлах не вызывает никаких химических изменений. Химическое действие тока происходит только в растворах и расплавах электролитов.

МАГНИТНОЕ ДЕЙСТВИЕ ТОКА

На большой железный гвоздь намотаем тонкий изолированный провод. Концы провода через ключ соединим с источником тока.

Если замкнуть ключ, то гвоздь намагнитится и будет притягивать к себе гвоздики, железные стружки, опилки. С прекращением тока в проводнике магнитные свойства гвоздя исчезнут.

Явление взаимодействия катушки с током и магнита лежит в основе работы прибора, называемого гальванометром. С помощью гальванометра можно судить о наличии тока и его направлении. Стрелка прибора связана с подвижной катушкой. Когда в катушке появляется электрический ток, стрелка отклоняется.

МЕХАНИЧЕСКОЕ ДЕЙСТВИЕ ТОКА

Металлическую рамку соединим с источником тока. При пропускании электрического тока через рамку она остаётся висеть неподвижно. Но если эту рамку поместить между полюсами подковообразного магнита, то она начнёт поворачиваться.

В этом опыте мы наблюдали механическое действие электрического тока, которое заключается в том, что электрический ток при протекании по рамке, помещённой между полюсами магнита, вызывает её вращение.

Устройство гальванометра

Гальванометром прибор назвали в честь итальянского физика и врача Луиджи Гальвани. Этот прибор способен измерять маленькие электрические токи (постоянные).

На схемах прибор обозначают кружком, внутри которого расположена большая латинская буква G. На некоторых схемах внутри круга находится стрелка, направленная вертикально вверх.

  • подковообразный магнит и
  • находящуюся внутри него рамку, содержащую витки тонкого медного провода (рис. 8).

Подвижная рамка находится на оси и может вокруг нее поворачиваться.

К рамке прикреплена стрелка. Она указывает, на какой угол рамка повернулась во время протекания в ней электрического тока.

Приведите примеры использования теплового действия тока в быту технике

Электроток, проходящий по проводниковому элементу, за счет ударения свободных электронов об ионы и атомы нагревает его. Тепловое действие тока можно наблюдать во всех аспектах жизни человека: от работающих ламп накаливания и бытовых приборов до получения цветных металлов и добычи азота.

Самодельный нагревательный прибор с нихромовой спиралью, что нагревается под воздействием электротока

Самодельный нагревательный прибор с нихромовой спиралью, что нагревается под воздействием электротока

Тепловое действие электрического тока

Еще в девятнадцатом веке опыты по изучению проводимости свидетельствовали, что ток, проходящий по нагрузке, нагревает ее. Исследования показали, что нагревается не только нагрузка, но и проводники.

Читайте так же:
Виды действия электрического тока тепловое химическое магнитное

Тепловое действие электрического тока

Рис. 1. Тепловое действие электрического тока.

Данный факт легко объясним, если вспомнить, что электрический ток – это перемещение зарядов в веществе нагрузки. При движении заряды взаимодействуют с ионами кристаллической решетки, и отдают им часть энергии, которая и переходит в тепло.

Закон Джоуля-Ленца

Поскольку разность потенциалов (напряжение) на нагрузке равна работе, которую совершит единичный заряд, двигаясь по нагрузке, то для вычисления работы тока, необходимо напряжение умножить на заряд, прошедший через нагрузку. Заряд же равен произведению тока, проходящего по нагрузке, на время прохождения. Таким образом:

Детальным изучением теплового действия электрического тока в середине XIXв занимались независимо Д.Джоуль (Великобритания) и Э.Ленц (Россия).

Джоуль и Ленц

Рис. 2. Джоуль и Ленц.

Было выяснено, что если нагрузка неподвижна, то вся работа электрического тока в этой нагрузке перейдет в тепло:

Как правило, напряжение на элементах электрической цепи различно, а ток в ней общий. Поэтому для определения теплового действия удобнее выразить напряжение через ток, учитывая сопротивление:

То есть, количество тепла, образующееся в нагрузке, равно произведению значения тока в квадрате, сопротивления и времени. Этот вывод носит название Закона Джоуля-Ленца.

Иногда ток нагрузки неизвестен, но известно ее сопротивление и подводимое напряжение. В этом случае удобнее выразить ток через известные величины:

и, подставив в формулу выше, получаем:

Из данной формулы можно видеть интересный факт – если в нагревательной плите сгорит часть спирали, и мы просто исключим сгоревшие места, то сопротивление спирали уменьшится, а поскольку напряжение сети останется прежним, то тепло, выделяемое плитой, возрастет. Мощность плитки увеличится.

Формула расчета и ее элементы

Тепловое действие тока может быть подтверждено разными опытами, где работа тока переходит во внутреннюю проводниковую энергию. При этом последняя возрастает. Затем проводник отдает ее окружающим телам, то есть осуществляется теплопередача с нагреванием проводника.

Формула для расчета в этом случае следующая: A=U*I*t.

Количество теплоты можно обозначить через Q. Тогда Q=A или Q=U*I*t. Зная, что U=IR, получается Q=I 2 *R*t, что и было сформулировано в законе Джоуля-Ленца.

Использование теплового действия электричества

Тепловое действие электрического тока находит широкое применение, в первую очередь, в нагревательных приборах.

Еще одним важным направлением использования теплового действия являются плавкие предохранители. Если необходимо отключить электрическую цепь при превышение допустимого тока, то в цепь можно включить плавкий предохранитель.

Устройство плавкого предохранителя

Рис. 3. Устройство плавкого предохранителя.

Это небольшая колба из негорючего материала, внутри которой проходит плавкая проволочка или лента, сопротивление которой рассчитано так, чтобы при превышении предельного тока она расплавилась, тем самым разорвав электрическую цепь.

Использование теплового действия электрического тока в устройстве теплиц и инкубаторов

Электрический ток
Использование теплового действия электрического тока в устройстве теплиц и инкубаторов.

2. Тепловое действие электрического тока. Закон Джоуля-Ленца.

3. Использование теплового действия электрического тока в устройстве теплиц.

4. Использование теплового действия электрического тока в устройстве инкубаторов.

Современный мир уже немыслимо представить без электричества. Электрический ток используется человеком повсеместно. Бытовые электроприборы прочно заняли свое место в жилище человека, в промышленности, на транспорте и различных учреждениях тоже нельзя обойтись без использования электричества.

Однако сельские жители, особенно пожилого возраста по-прежнему продолжают относиться осторожно к использованию электрического тока.

Цель доклада: Показать, как можно использовать электрический ток для нужд сельского хозяйства.

Подобрать литературу по теме доклада

Анализ и обобщение источников литературы

Выступление с докладом перед аудиторией.

Тепловое действие электрического тока. Закон Джоуля-Ленца.

При прохождении электрического тока по проводнику в результате столкновений свободных электронов с его атомами и ионами проводник нагревается. Количество тепла, выделяемого в проводнике при прохождении электрического тока, определяется законом Джоуля — Ленца. Его формулируют следующим образом. Количество выделенного тепла Q равно произведению квадрата силы тока I2, сопротивления проводника R и времени t прохождения тока через проводник:

Количество тепла, выделяющегося в проводе, пропорционально объему провода и приращению температуры, а скорость отдачи тепла в окружающее пространство пропорциональна разности температур провода и окружающей среды.

В первое время после включения цепи разность температур провода и окружающей среды мала. Только небольшая часть тепла, выделяемого током, рассеивается в окружающую среду, а большая часть тепла остается в проводе и идет на его нагревание. Этим объясняется быстрый рост температуры провода в начальной стадии нагрева.

По мере увеличения температуры провода растет разность температур провода и окружающей среды, увеличивается количество тепла, отдаваемое проводом. В связи с этим рост температуры провода все более замедляется. Наконец, при некоторой температуре устанавливается тепловое равновесие: за одинаковое время количество теплоты выделяющегося в проводе становится равным количеству теплоты выделяющемуся во внешнюю среду.

Практическое значение

Понятно, что количество выделяемого тепла зависит от плотности тока и проводимости определенного вещества. Наглядно соответствующие влияния можно регистрировать в ходе последовательного пропускания тока 2 и 50 А через контрольную медную жилу сечением 2 мм кв. Во втором эксперименте нагрев будет значительно сильнее. Его можно уменьшить, увеличив диаметр проводника.

Снижение потерь энергии

Рассмотренный пример демонстрирует нежелательное явление для линий электропередач. Использование части энергии на обогрев окружающего пространства увеличивает потери воздушных линий. Превышение порогового значения провоцирует разрушение жил, защитных оболочек. Чрезмерное повышение температуры – причина возникновения пожаров.

Подобные явления происходят, если выбрана чрезмерная сила тока, либо недостаточно поперечное сечение проводника. Количество тепла, выделяемого в линии, обратно пропорционально зависит от квадрата напряжения (U) на подключенном потребляющем устройстве. Повышением U можно уменьшить потери. Однако подобное действие увеличивает вероятность короткого замыкания, ухудшает общие параметры безопасности.

Выбор проводов для цепей

Отмеченные выше проблемы теплового разрушения в значительной мере зависят от удельного сопротивления (Rу). Для наглядности можно использовать материалы со значительно различающимися характеристиками.

Эксперимент с различными проводниками

Расчеты количества теплоты (Q, Дж) для образцов длиной 1 м сечением 1 мм кв. при силе тока 5А за 30 секунд:

  • медь – 12,75;
  • сталь – 75;
  • никелин – 315.
Читайте так же:
Количество теплоты в проводнике с переменным током

Особое внимание следует уделять параметрам силовых кабелей, которые должны сохранять целостность в процессе реальной эксплуатации. Как правило, бытовые линии монтируют в глубине строительных конструкций. Такой способ подразумевает хорошую защищенность от неблагоприятных внешних воздействий. Вместе с тем возрастают затраты на исправление ошибок и устранение последствий аварий.

Чтобы использовать кабельную продукцию правильно, следует руководствоваться тематическими нормативами, которые изложены в ПУЭ. Для упрощения выбора предлагаются специализированные таблицы, в которых приведены результаты расчетов с учетом следующих важных факторов:

  • тип изоляции;
  • длительность и величина перегрузок;
  • особенности прокладки.

Примеры действия электрического тока

Как известно, увидеть движущиеся заряды (электроны, ионы) мы не можем, так как они очень малы. Но как тогда можно обнаружить электрический ток?

ДЕЙСТВИЯ ЭЛЕКТРИЧЕСКОГО ТОКА

При протекании электрического тока могут происходить различные явления, которые называются действиями электрического тока.

ТЕПЛОВОЕ ДЕЙСТВИЕ ТОКА

Электрический ток, протекая по проводам, вызывает их нагревание.

Присоединим к полюсам источника тока железную или никелевую проволоку. Замкнув ключ, можно наблюдать, как проволока провиснет, т. е. она нагреется и удлинится. Таким образом её можно даже раскалить докрасна.

Именно на тепловом действии тока основана работа различных бытовых нагревательных приборов, таких, как электрический чайник, электрические плитки, утюги и др. Нить лампочки раскаляется и начинает светиться.

ХИМИЧЕСКОЕ ДЕЙСТВИЕ ТОКА

Как показывает опыт, на электродах, опущенных в раствор электролитов, происходит выделение чистого вещества. Этот процесс называется электролизом. Например, пропуская ток через раствор медного купороса, можно выделить чистую медь.

Электрический ток в металлах не вызывает никаких химических изменений. Химическое действие тока происходит только в растворах и расплавах электролитов.

МАГНИТНОЕ ДЕЙСТВИЕ ТОКА

На большой железный гвоздь намотаем тонкий изолированный провод. Концы провода через ключ соединим с источником тока.

Если замкнуть ключ, то гвоздь намагнитится и будет притягивать к себе гвоздики, железные стружки, опилки. С прекращением тока в проводнике магнитные свойства гвоздя исчезнут.

Явление взаимодействия катушки с током и магнита лежит в основе работы прибора, называемого гальванометром. С помощью гальванометра можно судить о наличии тока и его направлении. Стрелка прибора связана с подвижной катушкой. Когда в катушке появляется электрический ток, стрелка отклоняется.

МЕХАНИЧЕСКОЕ ДЕЙСТВИЕ ТОКА

Металлическую рамку соединим с источником тока. При пропускании электрического тока через рамку она остаётся висеть неподвижно. Но если эту рамку поместить между полюсами подковообразного магнита, то она начнёт поворачиваться.

В этом опыте мы наблюдали механическое действие электрического тока, которое заключается в том, что электрический ток при протекании по рамке, помещённой между полюсами магнита, вызывает её вращение.

Устройство гальванометра

Гальванометром прибор назвали в честь итальянского физика и врача Луиджи Гальвани. Этот прибор способен измерять маленькие электрические токи (постоянные).

На схемах прибор обозначают кружком, внутри которого расположена большая латинская буква G. На некоторых схемах внутри круга находится стрелка, направленная вертикально вверх.

  • подковообразный магнит и
  • находящуюся внутри него рамку, содержащую витки тонкого медного провода (рис. 8).

Подвижная рамка находится на оси и может вокруг нее поворачиваться.

К рамке прикреплена стрелка. Она указывает, на какой угол рамка повернулась во время протекания в ней электрического тока.

Тепловое действие тока: закон Джоуля-Ленца, примеры

Двигаясь в любом проводнике, электрический ток передает ему какую-то энергию, из-за чего проводник нагревается. Энергетическая передача осуществляется на уровне молекул: в результате взаимодействия электронов тока с ионами или атомами проводника часть энергии остается у последнего.

Тепловое действие тока приводит к более быстрому движению частиц проводника. Тогда его внутренняя энергия возрастает и трансформируется в тепловую.

Формула расчета и ее элементы

Тепловое действие тока может быть подтверждено разными опытами, где работа тока переходит во внутреннюю проводниковую энергию. При этом последняя возрастает. Затем проводник отдает ее окружающим телам, то есть осуществляется теплопередача с нагреванием проводника.

Формула для расчета в этом случае следующая: A=U*I*t.

Количество теплоты можно обозначить через Q. Тогда Q=A или Q=U*I*t. Зная, что U=IR, получается Q=I 2 *R*t, что и было сформулировано в законе Джоуля-Ленца.

Закон теплового действия тока — закон Джоуля-Ленца

Проводник, где протекает электрический ток, изучали многие ученые. Однако, самых заметных результатов удалось добиться Джеймсу Джоулю из Англии и Эмилию Христиановичу Ленцу из России. Оба ученых работали отдельно и выводы по результатам экспериментов делали независимо один от другого.

Они вывели закон, позволяющий оценить тепло, получаемое в результате действия тока на проводник. Его назвали законом Джоуля-Ленца.

Рассмотрим на практике тепловое действие тока. Примеры возьмем следующие:

  1. Обычную лампочку.
  2. Нагревательные приборы.
  3. Предохранитель в квартире.
  4. Электрическую дугу.

Лампочка накаливания

Тепловое действие тока и открытие закона способствовали развитию электротехники и увеличению возможностей для использования электричества. То, как применяются результаты исследований, можно рассмотреть на примере обычной лампочки накаливания.

Она устроена таким образом, что внутри протягивается нить, изготовленная из вольфрамовой проволоки. Этот металл является тугоплавким с высоким удельным сопротивлением. При проходе через лампочку осуществляется тепловое действие электрического тока.

Энергия проводника трансформируется в тепловую, спираль нагревается и начинает светиться. Недостаток лампочки заключается в больших энергетических потерях, так как лишь за счет незначительной части энергии она начинает светиться. Основная же часть просто нагревается.

Чтобы лучше это понять, вводится коэффициент полезного действия, который демонстрирует эффективность работы и преобразования в электроэнергию. КПД и тепловое действие тока используются в разных областях, так как имеется множество устройств, изготовленных на основании этого принципа. В большей степени это нагревательные приборы, электрические плиты, кипятильники и другие подобные аппараты.

Устройство обогревательных приборов

Обычно в конструкции всех приборов для нагревания есть металлическая спираль, в функцию которой и входит нагрев. Если нагревается вода, то спираль устанавливается изолированно, и в таких приборах предусматривается соблюдение баланса между энергией из сети и тепловым обменом.

Читайте так же:
Использование теплового действия электрического тока в устройстве теплицы

Перед учеными постоянно ставится задача по снижению энергетических потерь и поиску лучших путей и наиболее эффективных схем их внедрения, чтобы уменьшить тепловое действие тока. Используется, например, способ повышения напряжения во время передачи энергии, благодаря чему сокращается сила тока. Но такой способ, в то же время, понижает безопасность функционирования линий электропередач.

Другим исследовательским направлением является выбор проводов. Ведь именно от их свойств зависят потери тепла и другие показатели. Кроме того, при работе нагревательных приборов происходит большое выделение энергии. Поэтому спирали изготавливаются из специально предназначенных для этих целей, способных выдержать высокие нагрузки, материалов.

Квартирные предохранители

Чтобы улучшить защиту и обезопасить электрические цепи, используются особые предохранители. В роли главной части выступает проволока из легкоплавкого металла. Она проходит в пробке из фарфора, имеет винтовую нарезку и контакт в центре. Пробку вставляют в патрон, расположенный в фарфоровой коробке.

Свинцовая проволока является частью общей цепи. Если тепловое действие электрического тока резко возрастет, сечение проводника не выдержит, и он начнет плавиться. В результате этого сеть разомкнется, и не случится токовых перегрузок.

Электрическая дуга

Электрическая дуга является довольно эффективным преобразователем электрической энергии. Она используется при сварке металлических конструкций, а также служит мощным световым источником.

В основу устройства входит следующее. Берут два угольных стержня, подсоединяют провода и прикрепляют их в изолирующих держателях. После этого стержни подключают к источнику тока, который дает малое напряжение, но рассчитан на большую силу тока. Подключают реостат. Угли в городскую сеть включать запрещается, так как это может стать причиной пожара. Если коснуться одним углем о другой, то можно заметить, как сильно они раскалятся. Лучше не смотреть на это пламя, потому что оно вредно для зрения. Электрическую дугу используют в печах для плавки металла, а также в таких мощных осветительных приборах, как прожекторы, кинопроекторы и прочее.

Приведите пример использования теплового действия тока в быту

Общеизвестным фактом является то, что сеть постоянного тока имеет ряд преимуществ перед сетью переменного тока, основные из которых:

— уменьшение потерь при передаче энергии;

— повышение уровня электробезопасности, так как минимальный порог напряжения при переменном токе равен 2В, при постоянном токе 8В;

— по ЛЭП сети постоянного тока, при отсутствии трансформаторов, можно передавать некоторые виды сигналов (таких как кабельное телевидение, телефонная связь и др.).

Но основным недостатком сети постоянного тока является невозможность трансформации напряжения, т.е. для того чтобы повысить или понизить многократное напряжение нужно сначала превратить его в переменную, а после трансформации вновь в постоянное. Этот недостаток, по мнению многих, пока преобладает над преимуществами.

Цель исследования

В последние 10-15 лет в связи с ростом количества нелинейных потребителей переменного тока напряжением до 1000 В и особенно однофазной нагрузки резко возросли потери электроэнергии при ее транспорте от источника генерации до потребителя. Существенный рост потерь происходит из-за сильного искажения формы тока, ассиметричного протекания рабочих токов в кабельных и воздушных линиях, в трансформаторах, во внутридомовых электрических сетях. Передача избыточной реактивной мощности также существенно снижает пропускную способность электрических линий и силовых трансформаторов.

Трехфазный ток по происхождению предназначен для промышленности и тяжелой индустрии, для передачи электроэнергии на дальние расстояния. Он, собственно, для этого и был изобретен. Применение постоянного тока для электроснабжения электроустановок зданий предлагается как один из альтернативных вариантов для электроснабжения сектора экономики с однофазной нагрузкой с целью существенного снижения потерь электроэнергии (по предварительным оценкам до 20%).

В основе данного предложения лежат следующие положения:

1. Схема электроснабжения на постоянном токе симметрирует однофазную нагрузку в трехфазной сети и силовых трансформаторах в результате применения в ней двенадцатипульсного выпрямителя. Наработка на отказ современной силовой электроники достаточно высокая, имеется опыт эксплуатации данного оборудования в электрофицированном транспорте и специальных объектах.

2. Постоянный ток по самой своей природе не имеет гармонических токов и реактивной составляющей электроэнергии. Это также снижает потери электроэнергии при ее передаче по линиям электропередачи, в трансформаторах, в сетях потребителя в целом до 20% .

3. Большинство техники, использующейся в быту и офисах, может работать на постоянном токе, так как в основе их работы лежит принцип выпрямления переменного тока и преобразование его в частотных преобразователях по структурам техники для применения или выполнения разных функций, например для регулирования скорости вращения двигателей, изменения звука, цвета и т.п. Кроме того, промышленностью выпускается оборудование, непосредственно работающее от постоянного тока.

4. Учет электроэнергии постоянного тока не имеет привнесенных погрешностей в отличие от переменного тока с искаженной формой.

5. Постоянный ток практически не создает в окружающей среде переменное электромагнитное поле, влияющие на физиологию человека, т.е. в электроустановках с постоянным током электромагнитная обстановка чистая и безопасная.

6. В качестве источника постоянного тока для электроснабжения жилых домов, кроме основного источника, можно использовать аккумуляторы и альтернативные источники электроэнергии. При этом нетрадиционные источники электроэнергии можно использовать напрямую без преобразования и синхронизации, что существенно упрощает и удешевляет их применение [1].

В настоящее время постоянный ток можно применять во внутренних и уличных сетях освещения [4].

Результаты исследования

Потери электроэнергии сегодня подсчитываются экономическим путем и не соотносятся с техническими причинами, порождающими эти потери. Повышение эффективности расходования энергоресурсов в основном связано с дальнейшим использованием энергосберегающей техники. В основе данного подхода вновь лежит экономический подход, когда счетчик электроэнергии показывает меньшую величину. Причина увеличения потерь в линиях, во внутридомовых сетях и трансформаторах остается неизменной, и, следовательно, использование энергоэффективной техники не решает проблему сокращения потерь, а наоборот приводит к их росту и искажению показаний приборов учета электроэнергии и измерительных трансформаторов.

На сегодняшний день нет исследований по потерям в силовых трансформаторах, связанных с асимметричным режимом их работы и протекании в них несинусоидальных токов. Также неизвестно, как растут потери электроэнергии при протекании в линиях электропередачи искаженного и ассимметричного тока нагрузки. Очевидным остается тот факт, что потери при таких режимах растут, количество генерируемой энергии лишь частично доходит до потребителя.

Читайте так же:
Розетка для теплого пола шнайдер

Переход энергетической системы сразу на постоянный ток экономически невозможен, так как для этого потребуется переоборудовать уже существующую систему с сетью переменного тока. Есть замену генераторов переменного тока на генераторы постоянного тока. Пока возможен вариант использования сети постоянного тока при автономном энергоснабжении.

При автономном бытовом электроснабжении с помощью систем генерации из возобновляемых источников энергии таких, как солнце, ветер и вода экономически эффективнее будет использовать сеть постоянного тока [5]. Основные ее преимущества в некоторых системах генерации возобновляемыми источниками энергии:

— при применении солнечной электрической системы, генерируется постоянный ток, не требуется использование инверторов, что уже уменьшает потери почти на 20%;

— применяя ветровые электрические системы, генерируется переменный ток, но возможен вариант генерации постоянного тока. При отсутствии ветра сеть питают аккумуляторы, это тот же постоянный ток, стоимость батарей занимает почти половину стоимости всей системы, то есть мы избавимся инвертора, чем уменьшим потери и тем самым количество аккумуляторных батарей для системы;

— при использовании мини-гидроэлектростанции система может генерировать как переменный, так и постоянный ток.

Главным преимуществом сети постоянного тока является возможность изготовления и использования бытовых приборов постоянного тока. При этом потребление электроэнергии можно снизить, так как сейчас во многих бытовых приборах, которые питаются от сети переменного тока, напряжение понижают и выпрямляют для импульсного трансформатора. Поэтому за счет использования низкого напряжения постоянного тока, 24, 42, 126, 220 можно уменьшить расход материалов и потери на преобразование за счет исключения необходимости использования некоторых деталей. Примером является телевизор, компьютер, освещение светодиодами (это самый экономный, безопасный и надежный вид освещения), телефоны и др. Почти все бытовые приборы могут работать в сети постоянного тока:

— холодильник — термоэлектрические холодильники (при пропускании постоянного тока через термоэлемент, состоящий из двух проводников или полупроводников, в месте их соединения выделяется или поглощается некоторое количество теплоты, пропорциональна силе тока), они имеют высокую надежность за счет отсутствия движущихся частей;

— обогреватели — резистивные, инфракрасные (обогрев инфракрасными лучами);

— отопление — использовать гелиосистемы или тепловые насосы во время монтажа систем отопления (что уменьшит потребление электроэнергии по сравнению с другими видами энергии);

— вентиляция — уже сейчас некоторые производители устанавливают преобразователи для двигателей вентилятора;

— стиральные машины — некоторые производители применяют только коллекторные двигатели, которые могут работать при постоянном токе и имеют большой пусковой момент, не требует предварительного слива воды.

Для уменьшения затрат установки системы при наличии более одного дома вблизи друг от друга, целесообразнее будет использовать одну общую систему генерации.

Выводы

Приведены преимущества только трех систем генерации с возобновляемыми источниками энергии, которые экономически эффективно использовать в сети постоянного тока, а подобных систем генерации много. Эти системы потребляют меньшее количество энергии, некоторые из них только за счет уменьшения величины потерь. Таким образом, если строить энергосистему с сетью постоянного тока в масштабе страны, то, кроме вышеперечисленной экономии, будет еще и уменьшения потерь при передаче электроэнергии, повысит целесообразность внедрения таких сетей.

Постоянный ток, поступающий от солнечных батарей и аккумуляторов, должен быть приведен к напряжению нужной, а затем преобразован в переменный. Преобразование в переменный ток выполняется, так называемыми, инверторами. В отличие от бытовых инверторов, дающих лишь приближение к синусоидальному напряжению, профессиональные модели, обслуживающие целое здание или даже комплекс строений, должны давать «чистую» синусоиду, иначе возникнут проблемы с электромагнитной совместимостью оборудования и много других проблем. Соответственно, профессиональные инверторы — дорогостоящие агрегаты, исключение которых из схемы энергоснабжения при использовании постоянного тока позволит снизить общую стоимость системы, а заодно и повысить энергоэффективность за счет удаления как минимум одной ступени преобразования. Например, профессиональный инвертор, способный длительное время выдерживать нагрузку до 12 кВт стоит порядка 100 000 руб. (здесь и далее цены приводятся по состоянию на сентябрь 2015 г.) На самом деле, при переходе на постоянный ток удаляется и другая ступень преобразования, а, именно, выпрямитель в светодиодном светильнике. В том случае, если светодиодный светильник работает в помещении, где постоянно находятся люди, тем более, где они выполняют работу, требующую сколь-нибудь значительного зрительного напряжения, надо не только выпрямить переменный ток, но и сгладить пульсации. Для этого используются электролитические конденсаторы большой емкости — дорогостоящие и при этом весьма капризные устройства. Как правило, основной причиной выхода из строя светильников является преждевременный отказ драйвера, который происходит, когда светодиоды еще не полностью выработали свой ресурс. Зачастую этот отказ связан со сглаживающими конденсаторами. Причем электролитические конденсаторы имеют неприятную особенность деградировать от времени, даже если светильник не работает, а лежит на складе.

Разница между дешевыми и дорогими светильниками заключается главным образом в уровне пульсации и надежности драйвера. При питании от постоянного тока конструкция драйвера становится более простой и надежной, в ней не присутствуют сглаживающие конденсаторы. Поэтому светильник за 1200 руб. будет работать практически так же хорошо, как и за 2200 руб. (столько стоит светильник с надежным драйвером без пульсации от известного российского бренда) Мало того, за счет уменьшения числа деталей вполне реально дополнительно снизить цену на качественный светильник.

В итоге, переход на постоянный ток позволит снизить цены на светодиодные светильники примерно в 2 раза и добиться срока службы всего светильника, равного сроку службы установленных в нем светодиодов, то есть 50 000 ч.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector