Berezka7km.ru

Березка 7км
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Устройство и принцип работы цифрового электросчетчика

Устройство и принцип работы цифрового электросчетчика

Однофазный счетчик электроэнергии: подключение, принцип работы, критерии выбора

Частные потребители и промышленные предприятия обязаны обеспечивать постоянный учет электрической энергии, использованной для питания электрооборудования. В зависимости от количества фазных проводников, подключаемых к прибору учета электрической энергии все модели подразделяются на однофазные и трехфазные. В данной статье мы рассмотрим однофазный счетчик электроэнергии, как один из видов расчетных электрических приборов.

Принцип работы

За счет постоянного совершенствования технологий совершенствуются и счетчики электроэнергии. Все однофазные модели представленные на современном рынке подразделяются на индукционные и электронные.

Индукционный и электронный электросчетчик

Рис. 1. Индукционный и электронный электросчетчик

Первый вариант является первопроходцем в системе учета электрической энергии, несмотря на их простоту и доступность, электронные электросчетчики постепенно вытесняют их за счет высокой точности и расширенной функциональности.

Индукционные счетчики электроэнергии

Индукционные счетчики электроэнергии обладают простой и понятной конструкцией, на примере которой относительно легко разобраться с устройством и принципом действия простейшего электросчетчика.

Устройство индукционного счетчика электроэнергии

Рис. 2. Устройство индукционного счетчика электроэнергии

Конструктивно данная модель состоит из:

  • Токовой обмотки – представляет собой катушку индуктивности, включаемую в цепь последовательно нагрузке. Предназначена для измерения величины тока, потребляемого нагрузкой, изготавливается из проволоки большого сечения из нескольких витков.
  • Обмотки напряжения – также представлена катушкой индуктивности, но подключенной параллельно по отношению к токовой обмотке. Изготавливается из тонкой проволоки и укладывается большим количеством витков, применяется для измерения величины напряжения.
  • Алюминиевый диск – элемент счетчика электроэнергии, предназначенный для преобразования электромагнитного усилия в механическую работу. Устанавливается на ось для вращения по направлению усилий электромагнитного поля катушек индуктивности.
  • Счетный механизм – преобразует количество оборотов алюминиевого диска в цифровое отображение результатов измерения мощности. Состоит из механического циферблата шестеренчатого типа.
  • Постоянный магнит – применяется для сглаживания механических колебаний подвижного диска. Создает постоянный магнитный поток и обеспечивает плавность хода.

Принцип действия индукционного счетчика электроэнергии заключается в том, что при подключении в электрическую цепь на обмотку напряжения подается действующее номинальное напряжение. В случае подключения нагрузки к выводам электросчетчика через токовую катушку будет протекать определенная величина тока. При взаимодействии двух электромагнитных полей в алюминиевом диске начнут наводиться вихревые токи, что создаст его собственное электромагнитное поле. Механическое усилие от диска через систему шестеренок передастся счетному механизму.

Величина ЭДС, наводимая обмоткой тока и напряжения вступает во взаимодействие с собственным полем подвижного элемента, которое генерируется за счет вихревых токов. Мера данного взаимодействия и определяет скорость вращения алюминиевого диска. Чем больше сила тока, протекающего через токовую катушку, тем больше результат геометрического произведения напряжения и тока.

Геометрическое вычисление мощности счетчиком электроэнергии

Рис. 3. Геометрическое вычисление мощности счетчиком электроэнергии

Результирующее значение мощности будет быстрее вращать диск, что приведет к ускорению начисления показаний счетчика электроэнергии.

Электронные счетчики электроэнергии

С развитием и совершенствованием технических средств произошла модернизация классических индукционных электросчетчиков. Изначально выпускались гибридные электронно-механические модели, но со временем электроника все более и более вытесняла подвижные части. Конструктивно современная электронная модель счетчика электроэнергии состоит из:

  • Датчика тока – измеряет величину электрического тока, протекающего через счетчик электроэнергии;
  • Датчика напряжения – предназначен для измерения разности потенциалов, приложенной к зажимам счетчика;
  • Электронного преобразователя – осуществляет подсчет мощности, пропускаемой через счетчик электроэнергии;
  • Микроконтроллера – передает показания на дисплей и в блок памяти, может извлекать данные, обрабатывать их и передавать по каналам связи;
  • Дисплея – предназначен для вывода данных опроса со счетчика электроэнергии, может переключать информацию в многотарифных моделях;
  • Блока ОЗУ и ПЗУ – оперативная и долговременная память, предназначенная для хранения и обработки информации.

Принцип действия электронного счетчика электроэнергии основан на измерении силы тока и величины напряжения приложенного к подключенной нагрузке. Фиксация показаний осуществляется за счет датчиков и передается на электронный преобразователь, который рассчитывает величину мощности и преобразует единицу измеряемой величины в счетный импульс. Сигнал с преобразователя передается на микроконтроллер, который, в зависимости от установленной программы срабатывания, выдает на дисплей необходимые параметры электрической цепи. Помимо трансляции текущих показаний на дисплей, микроконтроллер записывает информацию в блок памяти, и извлекать ее в случае необходимости.

Плюсы и минусы

Однофазные электросчетчики применяются для учета электроэнергии, однако каждый вид прибора учета обладает своими преимуществами и недостатками. Поэтому по порядку рассмотрим плюсы и минусы для каждого из них.

Читайте так же:
Матрица или электросчетчик что лучше

Индукционные счетчики электроэнергии обладают такими плюсами:

  • Простая конструкция и меньшая себестоимость;
  • Доступная система работы, позволяющая даже неискушенному в электрике потребителю определить расход электроэнергии;
  • Такие счетчики электроэнергии куда более устойчивы к скачкам напряжения и низкому качеству электрической энергии в отечественных цепях;
  • Более длительный срок эксплуатации.

К существенным недостаткам индукционных моделей следует отнести их большие габариты и уязвимость перед простейшими способами хищения электроэнергии. Со временем начинают проявляться сбои в работе, часто потребители сталкиваются с явлением самохода.

Что такое электронный счетчик электроэнергии: 10 преимуществ

Электронный счетчик электроэнергии может быть однофазным и трехфазным

Электронный счетчик электроэнергии может быть однофазным и трехфазным Электричество – это ресурс, без которого в наше время обойтись почти невозможно. Именно на нем работает большинство приборов в доме. Это и стиральная машина, и телевизор, и компьютер и даже телефон вы не сможете зарядить без электричества. Однако за обеспечения дома электроэнергией нужно платить. Чтобы человек оплачивал лишь тот объем, который он использовал за месяц был изобретен счетчик электроэнергии. Сначала его точность была не высока, но сейчас на рынках появились электрические счетчики. Как они работают, и в чем их преимущества читайте далее.

Принцип работы электросчетчика

Электронный счетчик – это устройство, которое измеряет мощность, и напряжение потребляемого тока за определенный промежуток времени. Затем алгоритмы счетчика переводят полученную информацию в цифры.

Электронные счетчики работают на микропроцессорном оборудовании. Они оцифровывают вторичные величины за небольшой отрезок времени. Полученные результаты выводятся на дисплей и передаются посредством удаленного доступа. Таков их принцип работы.

Электронные счетчики очень удобны в использовании. Если для того, чтобы снять показания с индукционной модели такого устройства, нужно было иметь определенный опыт. То теперь все необходимые показания выводятся на экран в виде цифр.

У электронных счетчиков есть некоторые особенности, которые повышают их удобство, практичность и защиту. Поэтому покупка такого устройства во многих случаях, целиком и полностью оправдана.

Электросчетчик должен установить специалист, который поставит пломбу

Электросчетчик должен установить специалист, который поставит пломбу

Особенности, которые имеет устройство электронного электросчетчика:

  1. Такой электросчетчик будет надежно работать в абсолютно любом положении. Он не имеет вращающихся деталей, а потому не будет заклинивать.
  2. В электронных счетчиках изменить показания потребления энергии не получится. Там есть защита от сильных магнитов.
  3. В таком устройстве заложена программа проверки токов утечки. Она сравнивает токи, идущие по фазному и нулевому проводу. В случае большого разбега устройство отключает электроснабжение квартиры.
  4. Такие системы оснащены ограничителями мощности и другими элементами, повышающими их точность.

Все данные с таких устройств поступают прямиком на компьютеры коммунальных служб. Это помогает следить за состоянием электросети, а так же ужесточает контроль над квартирами, не давая злоумышленникам воровать электроэнергию.

Преимущества электронного счетчика

У электронного счетчика достаточно много преимуществ. Именно по этому все больше людей заменяют им свои старые приборы измерения электроэнергии. Такие устройства повышают точность показаний и упрощают их снятие.

Схема подключения электронного доступна всем. Ее множено найти в специализированной литературе. Однако лучше доверить установку счетчика работнику электрослужб. В этом случае за все неточности установке будут отвечать электрические инстанции.

Список достоинств электронных счетчиков электричества действительно велик. Давайте ознакомимся с ним подробнее.

Достоинства электронного электросчетчика:

  1. Такие устройства считаются высокоточными. Они практически не дают погрешностей в подсчете истраченного за определенный промежуток времени количества электроэнергии. Более того, он не изменяет своих показаний при воздействии различных факторов, например вибрации. Это его принципиальная разница с индукционным прибором.С сегодняшними ценами на электричество – это очень важное преимущества.
  2. Также повысилась чувствительность. Теперь счетчик более чутко реагирует на перепады и колебания в электросети.
  3. Еще одним преимуществом электронных счетчиков является их способность вести многотарифный учет в разное время суток. Это важно потому, что сейчас практикуется разная оплата за электричество днем и ночью.
  4. Электронные счетчики могут учитывать разные составляющие электроэнергии. Более того, вы можете записать показания счетчика за удобное время, а потом снова увидеть их, подключив к ноутбуку.
  5. Если электросчетчики старого образца не могли одновременно учитывать передаваемую и получаемую электроэнергию, то современные электронные счетчики такой способностью обладают. Поэтому вам не нужно будет устанавливать два устройства для каждой линии.
  6. Также электронные счетчики могут контролировать все параметры электросети, например, мощность, напряжение и нагрузка. Таким образом, при сбое какого-то параметра сети, прибор об этом проконтролирует.
  7. Счетчики электронного типа оснащены системой против воровства электричества. Подобные попытки фиксируются устройством и передаются энергослужбам.
  8. Электронный счетчик работает таким образом, что все показания передаются на один общий компьютер. Таким образом, отпадает надобность привлечения специальных работников для снятия и контроля показаний.
  9. Время между проверками состояния таких счетчиков возрасло. Это связанно с тем, что проверять их показания не нужно, а о сбоях в электросети они сообщают самостоятельно.
  10. Для такого многофункционального устройства электронный счетчик имеет весьма небольшие размеры. Он не превышает габаритами обычные устаревшие устройства.
Читайте так же:
Какие документы нужны при установке счетчика электроэнергии

Время от времени электрический счетчик нужно сдавать, чтобы проверили его работоспособность

Время от времени электрический счетчик нужно сдавать, чтобы проверили его работоспособность

Использование электронных счетчиков, прежде всего, выгодно для коммунальных служб. Однако и для жильцов современных квартир некоторые их свойства будут очень полезны.

Недостатки электронных счетчиков электроэнергии

Электронные счетчики, как вы, наверное, уже догадались, имеют не только достоинства. Они обладают и некоторыми недостатками. Чтобы окончательно разрешить вопрос с актуальностью их покупки, мы предлагаем ознакомиться и с их недостатками.

Недостатки электронных электросчетчиков:

  • Высокая стоимость;
  • Неустойчивость к перепадам напряжения;
  • Невозможность ремонта после поломки.

Как видите, все минусы данного прибора связанны с его стоимостью и недолговечностью. Поэтому прежде чем покупать дорогостоящий электросчетчик, подумайте, стоит ли оно того.

Виды счетчиков эл. Энргии

Существуют разные виды электрических счетчиков. Какой из них подойдет именно вам, зависит от ваших потребностей. Давайте вкратце ознакомимся со всеми вариациями электросчетчиков.

Виды электросчетчиков:

  1. Электронно-механический, или индукционный счетчик – это более старый вариант таких приборов. Он более долговечен, но имеет меньшую точность. Например, напряжение в 200 в. Он не видит.
  2. Электронный или цифровой счетчик – это современное, многофункциональное и точное устройство. Однако его срок службы ниже предыдущего варианта.
  3. Однофазный счетчик отлично подходит ля современных квартир. Одним из представителей такого оборудования является Меркурий.
  4. Использование трехфазного счетчика менее распространено, чем однофазного.

Для усовершенствования электросчетчиков может быть изготовлена электрическая глушилка. Она останавливает электросчетчик и может размещаться в подъездах и на столбах. Однако такие ухищрения караются законом.

Как работает электронный счетчик электроэнергии (видео)

Электронный электросчетчик – это современное и многофункциональное устройство. Несмотря на то, что оно имеет массу преимуществ перед старыми устройствами для измерения электроэнергии, его нельзя назвать долговечным. Поэтому до сих пор для многих актуальность его покупки остается под вопросом.

Общее устройство и принцип действия цифровых счетчиков электрической энергии

Стремительное развитие микроэлектроники наметило качественный переворот в области создания промышленных и бытовых систем контроля, который, в первую очередь, связан с использованием встраиваемых систем управления на базе микроконтроллеров. Тенденция к подобному переходу обусловлена, с одной стороны, постоянным снижением цен на микроконтроллеры и расширением их ассортимента, и с другой, теми преимуществами, которыми цифровые системы управления обладают по сравнению с их существующими аналогами. Применительно к счетчикам электроэнергии (СЭ), очевидные преимущества, связанные с переходом на микроконтроллерное управление, можно обобщить следующим образом:

– в цифровых СЭ достижим практически любой класс точности, при условии выбора соответствующей элементной базы и алгоритмов обработки информации. Значительно повышает надежность устройства отсутствие трущихся механических частей;

– обработка информации в цифровом виде позволяет одновременно определять как активную, так и реактивную составляющие мощности, что является важным, например, при учете распределения энергии в трехфазных сетях;

– появляется возможность создания многотарифных счетчиков. При работе такого СЭ значение накопленной энергии записывается в накопительный буфер текущего тарифа. Выбор текущего тарифа осуществляется автоматически.

В цифровых СЭ несложно организовать внешний интерфейс, по которому можно считывать показания счетчиков, изменять тарифы, производить диагностику и управление. Такие счетчики могут быть организованы в единую сеть с централизованным доступом. Например, все СЭ в жилом доме объединяются по внешнему интерфейсу и через модем выходят на телефонную линию. Таким образом, связываясь по телефонной сети, можно программировать или считывать информацию с любого СЭ в доме.

Цифровой СЭ может осуществлять статистические исследования, например, вычислять среднюю мощность нагрузки и ее дисперсию, а также хранить информацию о накопленной энергии за произвольные промежутки времени. Например, в бытовом СЭ можно реализовать сохранение накопленной информации за год по каждому из предшествующих 11 месяцев и сделать просмотр этой информации доступным для пользователя.

Использование накопленной статистической информации для прогнозирования и управления распределением энергоресурсов может в значительной степени повысить эффективность работы энергосистемы в целом.

Читайте так же:
Принцип работы электросчетчика с пультом

Применение цифровой базы делает возможным создание автоматизированной изолированной системы потребления, учета, распределения энергии и платежей. В такой системе может быть, например, предусмотрена предварительная оплата электроэнергии. Пользователь, в этом случае, заранее оплачивает определенное количество энергии. Информация об оплате либо непосредственно поступает на счетчик по внешнему интерфейсу, либо может быть записана на специальную электронную карточку, индивидуальную для каждого пользователя. Карточка программируется в пункте оплаты, после чего записанная информация считывается СЭ с помощью встроенного картридера. Если лимит купленной энергии будет исчерпан, а новая оплата не внесена, счетчик отключает пользователя от энергосети. Таким образом, в подобной системе исключается задолженность платежей за электроэнергию.

Цифровые СЭ могут выполняться в различных конструктивных исполнениях. Масса и объем цифровых СЭ значительно меньше электромеханических. Применение цифровых дисплеев позволяет значительно повысить удобство представления информации для пользователя.

Расчет энергии, потребленной за определенный промежуток времени любой нагрузкой, требует интегрирования текущих значений активных мощностей в течение всего времени измерения. В электромеханических СЭ это осуществляется механическим счетчиком. В цифровых СЭ необходимо реализовать постоянное суммирование вычисленной величины активной мощности за определенный промежуток времени. В общем случае, значение потребленной энергии выражается формулой:

где – значение мгновенной мощности в момент времени t; T – интервал времени измерения. При синусоидальных формах тока и напряжения в сети

где и – мгновенные значения, соответственно, напряжения и тока в сети; и – амплитудные значения напряжения и тока; и I – действующие значения напряжения и тока; – угол сдвига фаз между током и напряжением. Интегрирование по периоду дает значение активной потребляемой мощности , где S – полная мощность потребления в ваттах. Реактивная мощность определяется следующим выражением:

Для вычисления любых мощностей (P, Q, S) в цифровых счетчиках необходимо измерять любых два значения из четырех величин P, Q, S, φ. Это принципиально невозможно реализовать в электромеханических СЭ из-за их конструктивных возможностей.

На рис. 7.1…7.3 приведены типовые структурные схемы цифровых СЭ, позволяющих реализовать необходимые измерения.

На рис. 7.1 приведена структурная схема цифрового счетчика ватт-часов активной энергии типа СЭБ-2А.

Рис. 7.1. Структурная схема цифрового счетчика ватт-часов

активной энергии типа СЭБ-2А

Микропроцессор осуществляет все необходимые измерения, цифровую обработку и преобразования с помощью измерения мгновенных значений тока и напряжения в дискретные промежутки времени. Дискретизированные значения тока и напряжения в цепи, снимаемые с соответствующих датчиков, подаются на входы микропроцессора, обрабатываются для получения параметров P, Q, S, φ. Мощность определяется как

где N – количество отсчетов в одном периоде измеряемого сигнала; – частота дискретизации; – частота сети.

Точность измерения растет с увеличением частоты дискретизации, что, в свою очередь, ведет к усложнению программного обеспечения, поскольку обработка производится в реальном времени.

Технические характеристики счетчика СЭБ-2А:

– номинальное/максимальное значение силы тока – 5/50 А;

– номинальное значение напряжения – 220 В;

– установленный диапазон рабочих напряжений – от 0,9 до 1,1 Uном;

– счетчик имеет импульсный (телеметрический) выход основного передающего устройства;

· в режиме телеметрии (А) – 500 имп./кВт·ч;

· в режиме поверки (В) – 10000 имп./кВт·ч;

– чувствительность счетчика – 2,75 Вт для класса точности 1 и 5,5 Вт для класса точности 2;

– счетчик начинает нормально функционировать не позднее 5 с после приложения напряжения;

– импульсный выход счетчика при отсутствии тока в последовательной цепи и значения напряжения 253 В не создает более одного импульса;

– погрешность измерения активной энергии соответствует классу точности 1 или 2;

– в качестве датчика тока в счетчике используется токовый трансформатор;

– в качестве датчика напряжения в счетчике используется резистивный делитель.

Принцип работы счетчика. Сигналы с датчиков тока и напряжения поступают на входы АЦП микропроцессора и преобразуются в коды. Микропроцессор, перемножая цифровые коды, получает величину, пропорциональную мощности. Интегрирование мощности во времени дает информацию о величине энергии.

Микропроцессор управляет всеми узлами счетчика и реализует измерительные алгоритмы в соответствии со специализированной программой; периодически определяет тарифную зону, формирует импульсы телеметрии, ведет учет электроэнергии, времени и календаря; обрабатывает поступившие команды по интерфейсу и, при необходимости, формирует ответ.

Кроме данных об учтенной электроэнергии в памяти счетчика хранятся калибровочные коэффициенты, тарифное расписание, серийный номер, версия программного обеспечения счетчика. Калибровочные коэффициенты заносятся в память на предприятии-изготовителе. При отсутствии напряжения питания процессор переходит на питание от литиевой батареи с напряжением 3 В и емкостью 120 мА·ч. Процессор синхронизирован кварцевым резонатором, работающем на частоте 32,768 кГц. Блок питания вырабатывает два гальванически изолированных напряжения для питания микропроцессора и цепей интерфейса.

Читайте так же:
Оплата электроэнергии если нет индивидуального счетчика

Упростить алгоритм обработки информации и снизить затраты на комплектацию позволяет структурная схема, представленная на рис. 7.2.

Рис. 7.2. Структурная схема счетчика ватт-часов активной энергии

переменного тока Меркурий-200»

В этой структуре микроконтроллер (МК) выполняет функцию счетчика импульсов, пропорциональную активной мощности, вывод информации на дисплей и ряд специальных функций (изменение тарифов, сохранение информации в аварийных режимах, вывод служебной информации на внешние устройства и пр.). По мере накопления импульсов, соответствующих ватт-часам, значение накопленной энергии выводится на дисплей и записывается во FLASH-память. Если произойдет сбой, временное исчезновение напряжения сети, информация о накопленной энергии сохраняется во FLASH-памяти. После восстановления питающего напряжения эта информация считывается микроконтроллером, выводится на индикатор и счет продолжается с этой величины.

В случае реализации многотарифного СЭ, устройство должно обеспечивать обмен информацией с внешними устройствами по последовательному интерфейсу. Он может использоваться для задания тарифов, инициализации и коррекции таймера реального времени, получения информации о накопленных значениях энергии и т. д. Кроме того, интерфейс может обеспечивать подключение группы распределенных в пространстве СЭ в сеть с возможностью доступа к каждому из них. Структурная схема такого устройства представлена на рис. 7.3.

Рис. 7.3. Структурная схема многотарифного счетчика

Алгоритм работы структуры следующий. Память энергонезависимого ОЗУ разбита на 13 банков, в каждом из которых хранится информация о накопленной энергии по четырем тарифам: общем, льготном, пиковом и штрафном. В первом банке накопления производятся с момента начала эксплуатации счетчика, следующие 12 банков соответствуют накоплениям за 11 предыдущих и за текущий месяц. Накопления за текущий месяц записываются в соответствующий банк, и таким образом имеется возможность определить, сколько было накоплено энергии за любой из 11 предшествующих месяцев. Перед началом эксплуатации счетчика на заводе-изготовителе обнуляют содержимое банков памяти, т.е. накопление начинается с нулевых значений.

Переключение тарифов осуществляется по временным критериям: для каждого дня недели определяется свое тарифное расписание, т.е. времена начала основного и льготного тарифов и от нуля до трех интервалов времени для пикового тарифа. До 16 произвольных дней в году могут быть определены как праздничные, в эти дни работает тарифное расписание для воскресенья.

В счетчике может быть установлен режим ограничения по мощности и по количеству израсходованной энергии за месяц. В этом режиме счетчик фиксирует количество энергии, израсходованной сверх лимита. При превышении установленного лимита энергии производится либо переход на накопление по штрафному тарифу, либо отключение пользователя от энергосети. Штрафной тариф также может быть установлен принудительно (по интерфейсу связи) в случае, например, задолженности по оплате.

Каждый раз при включении счетчика в сеть (после очередного пропадания напряжения) фиксируется время и дата этого момента для возможности последующего контроля. Также предусмотрена запись времени и даты несанкционированного снятия крышки устройства.

Через специальный разъем к счетчику можно подключить картридер для считывания информации с индивидуальной электронной карточки о количестве энергии, оплаченной потребителем.

Программирование счетчика осуществляется через интерфейс RS-485 посредством фиксированной системы команд. Команды делятся на следующие виды: индивидуальные (для взаимодействия с конкретным счетчиком) и общие (для программирования всех подключенных к интерфейсу счетчиков). Существуют команды для установки даты, времени, временных рамок тарифов, лимитов мощности, программированных праздничных дней, считывания информации из банков накопителей потребленной энергии и т.д. Предусмотрен ряд команд по тестированию и калибровке счетчика. Для индивидуального доступа каждый счетчик имеет адрес и пароль, который программируются по интерфейсу. Применение общих команд также осуществляется через программируемый пароль. Интерфейс RS-485 требует всего два провода (витую пару) для обмена информацией. Причем драйверы интерфейса позволяют подключить на одну витую пару до 256 счетчиков. Это позволяет объединить в единую сеть все счетчики, например, в одном подъезде жилого дома, и централизовано считывать из них информацию или программировать их. Обмен по интерфейсу может производиться на одной из 8 фиксированных скоростей: 75, 150, 300, 600, 1200, 2400, 4800, 9600, 19200 бод; для выбора скорости обмена служит специальная команда.

Наличие режима нескольких тарифов позволяет выводить на индикацию дополнительную информацию о количестве потребления энергии по различным тарифам. Индикатор такого счетчика может быть достаточно сложен. Значение количества потребленной энергии выводится на восемь нижних разрядов (максимальное значение 99999.999 кВт·ч). Информация периодически изменяется, последовательно показывая содержимое накоплений по каждому из тарифов и сумму этих накоплений. Вначале эти данные выводятся за текущий месяц и затем с момента эксплуатации счетчика. Синхронно на символьном поле индикатора высвечивается знак того тарифа, к которому относятся текущие показания восьмиразрядного индикатора («0» – основной, «л» – льготный, «п» — пиковый, «ш» – штрафной, «+» – суммарный). На правом поле индикатора отображается текущая дата, день недели и сезонное время («летнее/зимнее»). Текущий тариф, по которому производятся накопления, отображается на тарифной зоне ЖКИ. При превышении установленных ограничений по мощности или по количеству потребленной за месяц энергии высвечивается, соответственно, «лимит мощности» или «лимит энергии».

Читайте так же:
Что нужно оплачивать при замене электросчетчика

Просмотр информации по предыдущим 11 месяцам производится при нажатии специально предусмотренной кнопки на корпусе счетчика. При каждом нажатии последовательно выводится информация о каждом тарифе соответствующего месяца, после чего происходит переход на предыдущий месяц, и процесс повторяется. Номер просматриваемого месяца и год отображаются на индикаторе даты. Если нажатия кнопки не происходит несколько секунд, счетчик возвращается в нормальный режим работы. При подключении картридера эта кнопка позволяет просмотреть количество энергии по каждому тарифу, имеющемуся в распоряжении у пользователя.

Электронные счетчики доказали свою эффективность при построении на их базе автоматизированных систем учета. Дальнейшее развитие электронных бытовых счетчиков и АСКУЭ можно прогнозировать в следующих направлениях:

— создание счетчиков с повышенной защитой от хищений, вплоть до отключения при обнаружении нештатных подсоединений;

— создание счетчиков с ограничением потребления в случае превышения заявленной мощности и других нарушений договорных обязательств;

— создание счетчиков, выполняющих функцию концентратора информации о потреблении других энергоносителей;

— создание АСКУЭ с использованием современных средств беспроводной связи;

— создание интегрированных автоматизированных систем учета энергоносителей бытовых потребителей (холодной и горячей воды, газа, тепла и электроэнергии).

Принцип действия и устройство счётчиков электрической энергии

Принцип деяния и устройство счётчиков электронной энергииПри помощи электросчетчиков осуществляется учет израсходованной электронной энергии. Электросчетчики бывают индукционные и электрические.

Измерительный механизм индукционного однофазового счетчика электронной энергии (электроизмерительный прибор индукционной системы) состоит из 2-ух электромагнитов, расположенных под углом 90° друг к другу, в магнитном поле которых находится легкий дюралевый диск. Схема устройства счетчика электронной энергии показана на рисунке 1.

Для включения счетчика в цепь его токовую обмотку соединяют с электроприемниками поочередно, а обмотку напряжения — параллельно. При прохождении по обмоткам индукционного счетчика переменного тока в сердечниках обмоток появляются переменные магнитные потоки, которые, пронизывая дюралевый диск, индуцируют в нем вихревые токи.

Взаимодействие вихревых токов с магнитными потоками электромагнитов делает усилие, под действием которого диск крутится. Последний связан со счетным механизмом, учитывающим частоту вращения диска, т.е. расход электронной энергии.

Схема устройства счетчика электронной энергии

Рис. 1. Схема устройства счетчика электронной энергии: 1 — обмотка тока, 2 — обмотка напряжения, 3 — червячный механизм, 4 — счетный механизм, 5 — дюралевый диск, б — магнит для притормаживания диска.

Устройство индукционного электросчетчика

Устройство индукционного электросчетчика

Рис. 2. Устройство индукционного электросчетчика

Для учета потребленной электроэнергии в сетях переменного трехфазного тока используются трехфазные индукционные электросчетчики , принцип деяния которых аналогичен однофазовым.

В текущее время все более обширное применение получили электрические (цифровые) электросчетчики . Электрические счетчики владеют рядом преимуществ по сопоставлению с индукционными счетчиками:

— малые габаритные размеры,

— отсутствие крутящихся частей,

— возможность учета электроэнергии по нескольким тарифам,

— измерение дневных максимумов нагрузки,

— учет как активной, так и реактивной мощности,

— более высочайший класс точности,

— возможность дистанционного учета электроэнергии.

Схема устройства электрического счетчика электроэнергии

Рис. 3. Схема устройства электрического счетчика электроэнергии

В текущее время учёт электроэнергии, в главном, делается по одному тарифу (другими словами цена электроэнергии схожа независимо от времени употребления). Но, начинает вводится многотарифные системы оплаты, при которых цена электронной энергии различна по часам суток либо по денькам недели.

Обозначенный подход обеспечит более равномерное потребление электроэнергии потребителями и понижение наибольшей нагрузки энергосистемы. Потому уже выпускаются электрические счётчики со встроенными часами, которые питаются от аккумуляторной батареи, что обеспечивает учёт электроэнергии по различным интервалам времени, задаваемым программно.

Обычно, электрические счётчики имеют жидкокристаллический индикатор, на котором показываются потребляемая электроэнергия по каждому из тарифов, текущая потребляемая мощность, текущее время и дата и другие измеряемые прибором характеристики.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector