Berezka7km.ru

Березка 7км
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Применение теплового действия электрического тока в быту

Применение теплового действия электрического тока в быту

Еще в девятнадцатом веке опыты по изучению проводимости свидетельствовали, что ток, проходящий по нагрузке, нагревает ее. Исследования показали, что нагревается не только нагрузка, но и проводники.

Тепловое действие электрического тока

Рис. 1. Тепловое действие электрического тока.

Данный факт легко объясним, если вспомнить, что электрический ток – это перемещение зарядов в веществе нагрузки. При движении заряды взаимодействуют с ионами кристаллической решетки, и отдают им часть энергии, которая и переходит в тепло.

Магнитное действие тока

Медь сама по себе не притягивается к магниту. В этом можно убедиться с помощью небольшого магнита и кусочка медного провода (рис. 5а).

На рисунке 5 кусок медного провода подвешен к двум штативам с помощью тонких нитей, не проводящих электрический ток.

Однако, во время протекания электрического тока, медный проводник начинает взаимодействовать с магнитом — притягиваться, или отталкиваться от него (рис. 5б).

Рис. 5. Вокруг проводника с током возникает магнитное поле, благодаря этому проводник взаимодействует с магнитом

С магнитом взаимодействует не сам медный проводник, а ток, протекающий по этому проводнику.

Почему проводок с током взаимодействует с магнитом

Электрический ток — это большое количество электронов, бегущих по проводку от одного его края к другому краю. Электроны обладают зарядом.

Вокруг движущихся зарядов возникает магнитное поле. Благодаря этому проводок с током превращается в маленький магнитик. И начинает взаимодействовать с магнитом, притягиваясь к нему, или отталкиваясь от него.

При этом, проводок, как более легкий предмет, будет двигаться. А магнит продолжит оставаться на месте. Из-за того, что его масса значительно больше массы кусочка провода.

Направление движения проводка зависит от полярности его подключения к батарейке и, от того, как располагаются полюса магнита.

На магнитном действии тока основано действие электромагнита.

Самодельный электромагнит

Его легко изготовить из куска гибкой изолированной медной проволоки и железного гвоздя.

Гвоздь нужно обернуть кусочком бумаги – гильзой (рис. 6). Затем на гильзу нужно намотать 200 – 300 витков тонкого медного провода в изоляции. К выводам полученной катушки нужно подключить батарейку от карманного электрического фонаря.

Рис. 6. Из подручных материалов можно изготовить самодельный электромагнит

Во время протекания тока, к гвоздю притягиваются различные мелкие железные предметы – скрепки, кнопки, гвоздики, железные стружки, опилки и т. п.

Отсоединив батарейку, увидим, что как только ток прекращается, гвоздь перестает притягивать к себе железные предметы.

Закон Джоуля-Ленца

Поскольку разность потенциалов (напряжение) на нагрузке равна работе, которую совершит единичный заряд, двигаясь по нагрузке, то для вычисления работы тока, необходимо напряжение умножить на заряд, прошедший через нагрузку. Заряд же равен произведению тока, проходящего по нагрузке, на время прохождения. Таким образом:

Детальным изучением теплового действия электрического тока в середине XIXв занимались независимо Д.Джоуль (Великобритания) и Э.Ленц (Россия).

Джоуль и Ленц

Рис. 2. Джоуль и Ленц.

Было выяснено, что если нагрузка неподвижна, то вся работа электрического тока в этой нагрузке перейдет в тепло:

Как правило, напряжение на элементах электрической цепи различно, а ток в ней общий. Поэтому для определения теплового действия удобнее выразить напряжение через ток, учитывая сопротивление:

То есть, количество тепла, образующееся в нагрузке, равно произведению значения тока в квадрате, сопротивления и времени. Этот вывод носит название Закона Джоуля-Ленца.

Иногда ток нагрузки неизвестен, но известно ее сопротивление и подводимое напряжение. В этом случае удобнее выразить ток через известные величины:

и, подставив в формулу выше, получаем:

Из данной формулы можно видеть интересный факт – если в нагревательной плите сгорит часть спирали, и мы просто исключим сгоревшие места, то сопротивление спирали уменьшится, а поскольку напряжение сети останется прежним, то тепло, выделяемое плитой, возрастет. Мощность плитки увеличится.

Химическое действие тока

Электрический ток, проходя через растворы некоторых кислот, щелочей или солей, вызывает выделение из них вещества. Это вещество осаждается на электродах – пластинках, опущенных в раствор и подключенных к источнику тока.

Такое действие тока используют в гальванопластике – покрытии металлом некоторых поверхностей. Применяют никелирование, омеднение, хромирование, а, так же, серебрение и золочение поверхностей.

С помощью раствора медного купороса можно продемонстрировать выделение вещества под действием тока. Водный раствор этой соли имеет голубоватый оттенок. Пропуская электрический ток (ссылка) через раствор, можно обнаружить выделение меди на одном из электродов (рис. 3).

Рис. 3. Из раствора медного купороса при протекании тока выделяется медь, осаждаясь на одном из электродов

На каком электроде будет выделяться медь

Медь в растворе купороса присутствует в виде положительных ионов. Тела, имеющие разноименные заряды, притягиваются. Поэтому, ионы меди будут притягиваться к пластинке, имеющей заряд со знаком «минус». То есть, пластинке, подключенной к отрицательному выводу источника тока. Такую пластинку называют отрицательным электродом, или катодом.

Вторую пластинку, подключенную к положительному выводу батареи, называют анодом.

Примечание: Медный купорос можно найти в хозяйственном магазине. Его химическая формула (large CuSO_<4>). Он используется в сельском хозяйстве для опрыскивания листвы плодовых деревьев, кустарников и овощных культур – к примеру, томатов, картофеля. Входит в составы различных растворов, применяемых в борьбе с болезнями растений и насекомыми-вредителями.

Применение химического действия тока в медицине

Химическое действие тока применяют не только в гальванопластике.

Пропускание электрического тока через растворы вызывает в них движение заряженных частиц вещества – положительных и отрицательных ионов. Человеческое тело содержит жидкости, в которых растворены некоторые вещества. А значит, в таких жидкостях присутствуют ионы.

Прикладывая специальные электроды, смоченные растворами лекарств на отдельные участки тела, и пропуская через них маленькие токи, можно вводить в организм некоторые лекарственные препараты (рис. 4).

Химическое действие тока применяют в медицине

Рис. 4. На химическом действии тока основан электрофорез

Такое введение лекарств называют электрофорезом и используется в физиопроцедурных кабинетах поликлиник и санаториев.

Использование теплового действия электричества

Тепловое действие электрического тока находит широкое применение, в первую очередь, в нагревательных приборах.

Еще одним важным направлением использования теплового действия являются плавкие предохранители. Если необходимо отключить электрическую цепь при превышение допустимого тока, то в цепь можно включить плавкий предохранитель.

Читайте так же:
Ток базы равен тепловому току

Устройство плавкого предохранителя

Рис. 3. Устройство плавкого предохранителя.

Это небольшая колба из негорючего материала, внутри которой проходит плавкая проволочка или лента, сопротивление которой рассчитано так, чтобы при превышении предельного тока она расплавилась, тем самым разорвав электрическую цепь.

Электрический ток, проходя через любой проводник, сообщает ему некоторое количество энергии. В результате этого проводник нагревается. Передача энергии происходит на молекулярном уровне, т. е., электроны взаимодействуют с атомами или ионами проводника и отдают часть своей энергии. В результате этого, ионы и атомы проводника начинают двигаться быстрей, соответственно можно сказать, что внутренняя энергия увеличивается и переходит в тепловую энергию. Данное явление подтверждается различными опытами, которые говорят о том, что вся работа, которую совершает ток, переходит во внутреннюю энергию проводника, она в свою очередь увеличивается. После этого уже проводник начинает отдавать её окружающим телам в виде тепла. Здесь уже в дело вступает процесс теплопередачи, но сам проводник нагревается. Этот процесс рассчитывается по формуле: А=U·I·t А – это работа тока, которую он совершает, протекая через проводник. Можно также высчитать количество теплоты, выделяемое при этом, ведь это значение равно работе тока. Правда, это касается, лишь неподвижных металлических проводников, однако, такие проводники встречаются чаще всего. Таким образом, количество теплоты, также будет высчитываться по той же форме: Q=U·I·t. История открытия явления В своё время свойства проводника, через который протекает электрический тока, изучали многие учёные. Особенно среди них были заметны англичанин Джеймс Джоуль и русский учёный Эмилий Христианович Ленц. Каждый из них проводил свои собственные опыты, а вывод они смогли сделать независимо друг от друга. На основе своих исследований, они смогли вывести закон, который позволяет дать количественную оценку выделяемого тепла в результате воздействия электрического тока на проводник. Данный закон получил название «Закон Джоуля-Ленца». Джеймс Джоуль установил его в 1842 году, а примерно через год Эмиль Ленц пришёл к тому же выводу, при этом их исследования и проводимые опыты никак не были связаны друг с другом. Применение свойств теплового действия тока Исследования теплового воздействия тока и открытия закона Джоуля-Ленца позволили сделать вывод, подтолкнувший развитие электротехники и расширить возможности применения электричества. Простейшим примером применения данных свойства является простая лампочка накаливания. Устройство её заключается в том, что в ней применяется обычная нить накаливания, сделанная из вольфрамовой проволоки. Этот металл был выбран не случайно: тугоплавкий, он имеет довольно высокое удельное сопротивление. Электрический ток проходит через эту проволоку и нагревает её, т. е. передаёт ей свою энергию. Энергия проводника начинает переходить в тепловую энергию, а спираль разогревается до такой температуры, что начинает светиться. Главным недостатком такой конструкции, конечно, является то, что происходят большие потери энергии, ведь только небольшая часть энергии преобразуется в свет, а остальная уходит в тепло. Для этого вводится такое понятие в техники, как КПД, показывающее эффективность работы и преобразования электрической энергии. Такие понятия как КПД и тепловое воздействие тока применяются повсеместно, так как существует огромное количество приборов основанных подобном принципе. Это в первую очередь касается нагревательных приборов: кипятильников, обогревателей, электроплит и т. д. Как правило, в конструкциях перечисленных приборах присутствует некая металлическая спираль, которая и производит нагревание. В приборах для нагревания воды она изолирована, в них устанавливается баланс между потребляемой из сети энергией (в виде электрического тока) и тепловым обменом с окружающей средой. В связи с этим, перед учёными стоит нелёгкая задача по снижению потерь энергии, главной целью является поиск наиболее оптимальной и эффективной схемы. В данном случае тепловое воздействие тока является даже нежелательным, так как именно оно и ведёт к потерям энергии. Самым простым вариантом является повышение напряжения при передаче энергии. В результате снижается сила тока, но это приводит к снижению безопасности линий электропередач. Другое направление исследований – это выбор проводов, ведь от свойств проводника зависят и тепловые потери и прочие показатели. С другой стороны, различные нагревательные приборы требуют большого выделения энергии на определённом участке. Для этих целей изготавливают спирали из специальных сплавов. Для повышения защиты и безопасности электрических цепей применяются специальные предохранители. В случае чрезмерного повышения тока сечение проводника в предохранителе не выдерживает, и он плавится, размыкая цепь, защищая, таким образом, её от токовых перегрузок.

Принцип работы нагревательных приборов

Чтобы правильно оценить эффективность того или иного устройства, применяют коэффициент полезного действия. Данная величина представляет собой отношение полезной энергии ко всему количеству затраченной или потребленной энергии.

Все электрические нагревательные приборы работают на основе теплового действия тока. Их основным элементом, осуществляющим нагрев, служит спираль, материал которой имеет значительное удельное сопротивление. Для ее размещения применяются изоляторы из керамики с высокой теплопроводностью.

Тепловое действие электрического тока

В приборах, предназначенных для нагревания жидкостей, для размещения изолированной спирали используются специальные трубки, материалом которых служит нержавеющая сталь.

В процессе работы прибора, его спираль имеет постоянную температуру, за счет баланса, который очень быстро устанавливается между электроэнергией и теплотой, поступающей в окружающую среду.

Самостоятельная работа по физике Электрический ток в металлах. Действия электрического тока. Направление электрического тока для 8 класса

Самостоятельная работа по физике Электрический ток в металлах. Действия электрического тока. Направление электрического тока для 8 класса с ответами. Самостоятельная работа включает 2 варианта, в каждом по 5 заданий.

Вариант 1

1. Какие частицы создают электрический ток в металлах? Что находится в узлах кристаллической решётки?

2. Какое действие тока мы используем, включая вентилятор? Зачем нам нужен этот прибор?

3. Какой существует самый простой способ определить, заряжена ли батарейка?

4. Как можно использовать магнитное действие тока для сортировки металлолома и перемещения стальных деталей?

5. Обычная лампа накаливания позволяет продемонстрировать два действия электрического тока. Какие?

Вариант 2

1. Внутри стены проложена электропроводка. Как, не вскрывая стену, можно обнаружить расположение проводов?

2. Какое действие тока позволяет покрывать золотом ювелирные изделия?

3. В коробке перемешаны медные винты и железные шурупы. Какое действие тока позволит их рассортировать?

4. Какое преимущество имеют лампы дневного света перед лампами накаливания?

Читайте так же:
Удельная тепловая мощность в медном проводнике при плотности тока

5. Какое направление тока условно принято в физике? В чем заключается противоречие с действительным движением заряженных частиц?

Ответы на самостоятельную работа по физике Электрический ток в металлах. Действия электрического тока. Направление электрического тока для 8 класса
Вариант 1
1. Электрический ток в металлах создают электроны. В узлах кристаллической решетки находятся положительные ионы и атомы.
2. Магнитное действие тока. Вентилятор используется для охлаждения воздуха в окружающем пространстве.
3. Поднять батарейку на сантиметр от поверхности, если батарейку при падении не упала, то она заряжена, если батарейка упала, то батарейка разряжена.
4. Можно создать электромагнит, который будет притягивать к себе стальные детали. После сортировки, изменяя силу тока в магните, можно отделить материалы, в которых большое содержание магнитных веществ, от материалов, у которых это содержание не велико.
5. Лампа демонстрирует тепловые и световые действия тока.
Вариант 2
1. С помощью магнитной стрелки, если поднести ее к стене, в том месте где стрелка начнет отклонятся находятся провода.
2. Химическое действие тока в процессе электролиза.
3. Собрать магнит, на медь магнитное поле действовать не будет, а железные шурупы притянутся к нему.
4. Лампы дневного света потребляют меньше энергии. Энергосберегающие лампы выделяют меньше тепла, а светят ярче. Быстро разгораются.
5. В физике принято считать, что за направление тока берут направление движения положительных частиц, то есть от положительного полюса источника к отрицательному. Противоречие в том, что считается что ток создаются отрицательно заряженные частицы — электроны.

2.3. ОБНАРУЖЕНИЕ И ИЗУЧЕНИЕ ДЕЙСТВИЯ ЭЛЕКТРИЧЕСКОГО ТОКА

Первые же опыты с электрическим током[1] не могли не привести к открытию некоторых присущих ему свойств. Поэтому рассматриваемый период в истории электричества характеризуется главным образом обнаружением и изучением различных действий электрического тока. Исследования электрического тока, производившиеся в большом масштабе в первые годы XIX в., привели к открытию химических, тепловых, световых и магнитных его действий.

В 1800 г. вскоре после получения известия об изобретении вольтова столба члены Лондонского Королевского общества Антони Карлейль (1768–1840 гг.) и Вильям Никольсон (1753–1815 гг.) [1.6] произвели ряд опытов с вольтовым столбом, которые привели их к открытию нового явления: при прохождении тока через воду имело место выделение газовых пузырьков; исследовав выделявшиеся газы, они правильно установили, что это кислород и водород. Таким образом впервые был осуществлен электролиз воды. Вскоре после опубликования работ А. Карлейля и В. Никольсона (июль 1800 г.) немецкий физик Иоганн В. Риттер (1776–1810 гг.) также осуществил разложение воды током. После открытия действия тока на воду ряд ученых заинтересовался вопросом о том, к каким результатам приведет пропускание тока через другие жидкости. В том же 1800 г. голландский химик Вильям Крейкшенк (1745–1800 гг.), пропуская ток через раствор поваренной соли, получил на отрицательном полюсе едкий натр, не подозревая, что здесь имела место вторичная реакция: поваренная соль разлагалась на Na и Сl, причем натрий, жадно соединяясь с водой, образовывал едкий натр.

Указанные эксперименты положили начало исследованию химических действий гальванического тока, получивших впоследствии важное практическое применение.

Тепловые действия тока были обнаружены в результате накаливания тонких металлических проводников и воспламенения посредством искр легко воспламеняющихся веществ. Световые явления наблюдались в виде искр различной длины и яркости.

В 1802 г. итальянский ученый Джовани Д. Романьози (1761–1835 гг.) обнаружил, что электрический ток в проводнике вызывает отклонение свободно вращающейся магнитной стрелки, находящейся вблизи этого проводника. Однако тогда, в первые годы изучения электрического тока, явление, открытое Д. Романьози, имевшее, как впоследствии выяснилось, громадное значение, не получило должной оценки. Только позднее, в 1820 г., когда наука об электричестве достигла более высокого уровня, магнитное действие тока, описанное датским физиком Гансом Христианом Эрстедом (1777–1851 гг.), стало предметом глубокого и всестороннего изучения.

Среди многочисленных исследований явлений электрического тока, произведенных в первые годы после построения вольтова столба, наиболее выдающимися были труды первого русского электротехника, профессора физики Санкт-Петербургской Медико-хирургической Академии, академика Василия Владимировича Петрова (1761–1834 гг.), так как в них впервые была показана и доказана возможность практического применения электричества [2.1; 2.2; 2.20].

Поистине трагическая судьба постигла этого выдающегося ученого, который в истории русской физики, по словам бывшего президента Академии наук СССР академика СИ. Вавилова, по значению своих трудов «непосредственно следует за М.В. Ломоносовым». Какими же заслугами нужно было обладать сыну скромного приходского священника в г. Обояни (Курской губернии), чтобы удостоиться звания академика Петербургской Академии наук, значительная часть членов которой имела знатное происхождение, а многие были иностранцами. Несмотря на то что В.В. Петров был не только талантливым физиком и химиком, но и блестящим педагогом, основателем первого крупного физического кабинета, «превосходнейшего во всей Российской империи», он постоянно испытывал враждебное отношение официальных кругов. После смерти В.В. Петрова делается все для того, чтобы имя его было забыто. И это удалось. Целое поколение русских физиков в течение полувека (1834–1886 гг.) ничего не знали о своем выдающемся соотечественнике. И только в 1886 г. был обнаружен его главный труд «Известия о гальвани-вольтовских опытах» (СПб., 1803). Книга вызвала огромный интерес. Видные физики выступают с докладами о вкладе В.В. Петрова в отечественную электротехнику, в 1887 г. в журнале «Электричество» появляется первая статья о забытом русском электротехнике.

В 30-х годах нашего века были проведены более полные исследования трудов В.В. Петрова, а в 1935 г. Президиум ЦИК СССР принял постановление «Об ознаменовании столетия со дня смерти первого русского электротехника академика В.В. Петрова». В своих трудах по электричеству В.В. Петров собрал обширный опытный материал, который им был тщательно проанализирован. В.В. Петров глубоко понимал значение эксперимента для всестороннего изучения явлений природы. Он писал: «… гораздо надежнее искать настоящего источника электрических явлений не в умствованиях, к которым доселе только прибегали почти все физики, но в непосредственных следствиях самих опытов».

Будучи хорошо знакомым с опытами, производящимися с вольтовым столбом как в России, так и за границей, В.В. Петров пришел к правильному выводу о том, что наиболее полное и всестороннее изучение гальванических явлений возможно только при условии создания большой батареи, т.е. по современной терминологии источника электрической энергии высокого напряжения. Поэтому он добивается у руководства Медико-хирургической Академии выделения средств для постройки «такой огромной величины батареи, чтобы оною можно было надежнее производить такие новые опыты», каких не производил никто из физиков.

Читайте так же:
Тепловой эффект протекания тока

Рис. 2.3. Примерное расположение и соединение элементов в батарее Петрова

В апреле 1802 г. батарея В.В. Петрова, состоявшая из 4200 медных и цинковых кружков, или 2100 медно-цинковых элементов (В.В. Петров называл ее «огромная наипаче батарея»), была готова. Она располагалась в большом деревянном ящике, разделенном по длине на четыре отделения (рис. 2.3). Стенки ящика и разделяющих его перегородок были покрыты сургучным лаком. Общая длина гальванической батареи В.В. Петрова составляла 12 м — это был крупнейший в мире источник электрического тока. Как показали современные экспериментальные исследования с моделью батареи В.В. Петрова, электродвижущая сила этой батареи составляла около 1700 В, а максимальная полезная мощность 60–85 Вт. Ток короткого замыкания батареи не превышал 0,2 А. В.В. Петров вначале производил, как он указывал, уже известные опыты других физиков, а потом старался производить и такие опыты, «… о которых дотоле не имел … никакого известия».

Долгое время точная дата первых экспериментов с «огромной наипаче батареей» была неизвестна. Но в 1950 г. была обнаружена статья в журнале «Северный вестник» (1804 г.), в которой указывается дата первых публичных опытов В.В. Петрова — 1802 г. (рис. 2.4) [2.2].

Свои разнообразные опыты В.В. Петров подробно описал в своем труде — первой книге на русском языке, посвященной исследованиям в области гальванизма «Известие о галвани-вольтовских опытах …» (рис. 2.5).

Следует отметить, что и за границей не только до выхода в свет книги В.В. Петрова, но и в течение двух десятилетий после ее публикации не появилось не одного оригинального сочинения, в котором были бы с такой полнотой освещены явления электрического тока.

В.В. Петрову было хорошо известно, с каким интересом относятся в России к изучению явлений электрического тока. Поэтому он в своей книге подробно описал не только опыты с гальванической батареей, но и способы ее изготовления, ухода за ней, методику экспериментов и т.п. Важно подчеркнуть, что книга написана на русском языке, в первую очередь для тех русских людей, которые не владеют иностранными языками и живут в «отдаленных от обеих столиц местах».

Рис. 2.4. Страница из журнала «Северный вестник»

Рис. 2.5. Титульный лист книги В.В. Петрова

В книге В.В. Петрова описаны его опыты по электролизу различных жидкостей, исследованию явлений прохождения электрического тока в разреженном воздухе, наблюдению «светоносных» явлений, сопровождающих действие электрического тока, изучению тепловых действий тока.

В.В. Петров впервые подошел к пониманию того, что действие батареи основано на химических процессах, происходящих в гальваническом элементе медь — цинк, и правильно установил роль крайних металлических кружков, которые служили лишь проводниками электричества. В.В. Петров также верно указал на то, что окисление поверхности металлических кружков вызывает ослабление действия батареи.

Петровым была впервые установлена важнейшая закономерность в электрической цепи — зависимость тока в проводнике от площади поперечного сечения проводника. Он правильно указал на то, что при увеличении площади поперечного сечения проводника ток в нем возрастает. Поэтому В.В. Петров раньше всех предшественников Г. Ома, сформулировавшего в 1826 г. известный закон, носящий его имя, установил, что через вещества, обладающие большим сопротивлением, гальвани-вольтовская жидкость (так он называл электрический ток. — Авт.) может протекать лишь тогда, когда «количество ее весьма знатно увеличится», т.е. по современной терминологии при повышении напряжения в цепи. Термин «сопротивление» впервые введен в электротехнический язык В.В. Петровым.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

Глава 4.1. РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА НАПРЯЖЕНИЕМ до 1 кВ ПЕРЕМЕННОГО ТОКА и до 1,5 кВ ПОСТОЯННОГО ТОКА

Глава 4.1. РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА НАПРЯЖЕНИЕМ до 1 кВ ПЕРЕМЕННОГО ТОКА и до 1,5 кВ ПОСТОЯННОГО ТОКА Область применения Вопрос. На какие РУ распространяется настоящая глава Правил?Ответ. Распространяется на РУ и НКУ напряжением до 1 кВ переменного тока и до 1,5 кВ

10.2. Воздействие электрического тока на человека

10.2. Воздействие электрического тока на человека Ток, проходящий через тело человека, действует на организм не только в местах контакта и путях протекания тока, но также и на кровеносную, дыхательную и сердечно-сосудистую системы.Виды травм, связанных с воздействием

Глава 7 Работа электрического потенциального поля

Глава 7 Работа электрического потенциального поля Перейдем к рассмотрению устройств преобразования энергии, в которых, так или иначе, используется электрическое потенциальное поле. Начнем с электростатических моторов. Например, мотор Франклина, рис. 70, отлично

1. Штурмовые действия

1. Штурмовые действия На третий день войны в Корее (1950–1953 гг.) истребители-бомбардировщики совершили первые вылеты на поддержку своих сухопутных войск, отступавших к югу. По признанию американского командования, летный состав не был к тому времени готов к войне. Способы

Глава 4.1. РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА НАПРЯЖЕНИЕМ ДО 1 КВ ПЕРЕМЕННОГО ТОКА И ДО 1,5 КВ ПОСТОЯННОГО ТОКА

Глава 4.1. РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА НАПРЯЖЕНИЕМ ДО 1 КВ ПЕРЕМЕННОГО ТОКА И ДО 1,5 КВ ПОСТОЯННОГО ТОКА Область применения Вопрос 1. На какие распределительные устройства распространяется настоящая глава Правил?Ответ. Распространяется на распределительные устройства

§ 1.4 Природа электрического отталкивания и закон Кулона

§ 1.4 Природа электрического отталкивания и закон Кулона Электрические заряды постоянно испускают во всех направлениях частицы, разлетающиеся с постоянной скоростью вдоль прямых линий. Воздействие на заряд зависит лишь от расположения и скорости этих частиц возле

Глава 15 Внутренняя структура электрического потенциального поля

Глава 15 Внутренняя структура электрического потенциального поля Эфир, как и любая физическая среда, существование которой мы можем принять, вместе с Менделеевым, имеет определенные физические свойства. Менделеев писал об упругости данной среды в статье «Попытка

1.4.2. Обнаружение ЦВЗ с нулевым знанием

1.4.2. Обнаружение ЦВЗ с нулевым знанием Робастные ЦВЗ могут применяться в различных приложениях, соответственно, и требования к ним могут предъявляться различные. Можно выделить следующие категории требований к робастным ЦВЗ:— ЦВЗ обнаруживается всеми желающими. В этом

Читайте так же:
Тепловой провод для водопровода как работает

ГЛАВА 4 Что такое молния и гром. «Электрический указатель» Рихмана и «громовая машина» Ломоносова и Рихмана. Вклад Франклина в изучение атмосферного электричества

ГЛАВА 4 Что такое молния и гром. «Электрический указатель» Рихмана и «громовая машина» Ломоносова и Рихмана. Вклад Франклина в изучение атмосферного электричества «Электрический указатель» РихманаЛетом 1753 г. ведущие газеты России и Западной Европы опубликовали

1.4. ИЗУЧЕНИЕ АТМОСФЕРНОГО ЭЛЕКТРИЧЕСТВА

1.4. ИЗУЧЕНИЕ АТМОСФЕРНОГО ЭЛЕКТРИЧЕСТВА Важным и вполне закономерным шагом на пути изучения электрических явлений был переход от качественных наблюдений к установлению количественных связей и закономерностей, к разработке основ теории электричества. Наиболее

2.2. СОЗДАНИЕ ПЕРВОГО ИСТОЧНИКА ЭЛЕКТРИЧЕСКОГО ТОКА

2.2. СОЗДАНИЕ ПЕРВОГО ИСТОЧНИКА ЭЛЕКТРИЧЕСКОГО ТОКА В течение нескольких лет (1792–1795 гг.) А. Вольта не только повторил все опыты Л. Гальвани, но и произвел ряд новых исследований. И если Л. Гальвани искал причину обнаруженных им явлений как физиолог, то А. Вольта, будучи

2.5. ВЗАИМОДЕЙСТВИЕ ЭЛЕКТРИЧЕСКОГО ТОКА И МАГНИТА

2.5. ВЗАИМОДЕЙСТВИЕ ЭЛЕКТРИЧЕСКОГО ТОКА И МАГНИТА Расширение и углубление исследований электрических явлений привели к открытию и изучению новых свойств электрического тока. О связи электрических и магнитных явлений говорили многие факты, наблюдавшиеся, в частности,

2.12. ПЕРВЫЕ ИСТОЧНИКИ ЭЛЕКТРИЧЕСКОГО ОСВЕЩЕНИЯ

2.12. ПЕРВЫЕ ИСТОЧНИКИ ЭЛЕКТРИЧЕСКОГО ОСВЕЩЕНИЯ В 40–70 гг. XIX в. стали создаваться первые источники электрического освещения. Освещение является естественной и постоянной потребностью человека. Самым долгим был путь от лучины к свече и затем к масляной лампе. В первой

Реферат на тему; Воздействие электрического тока на организм человека и меры защиты от поражения электрическим током в быту и производственной сфере

Реферат на тему «Воздействие электрического тока на организм человека и меры защиты от поражения электрическим током в быту и производственной сфере»

Мы подробно рассмотрели свойства электростатического поля, порождаемого неподвижными электрическими зарядами. При движении электрических зарядов возникает целый ряд новых физических явлений, к изучению которых мы приступаем.
В настоящее время широко известно, что электрические заряды имеют дискретную структуру, то есть носителями зарядов являются элементарные частицы – электроны, протоны и т.д. Однако в большинстве практически значимых случаев эта дискретность зарядов не проявляется, поэтому модель сплошной электрически заряженной среды хорошо описывает явления, связанные с движением заряженных частиц, то есть с электрическим током.

Электрическим током называется направленное движение заряженных частиц

С использованием электрического тока вы хорошо знакомы, так как электрический ток чрезвычайно широко используется в нашей жизни. Не секрет, что наша нынешняя цивилизация в основном базируется на производстве и использовании электрической энергии. Электрическую энергию достаточно просто производить, предавать на большие расстояния, преобразовывать в другие требуемые формы.

Кратко остановимся на возможных проявлениях действия электрического тока.

Тепловое действие

электрического тока проявляется практически во всех случаях протекания тока. Благодаря наличию электрического сопротивления при протекании тока выделяется теплота, количество которой определяется законом Джоуля-Ленца, с которым вы должны быть знакомы. В некоторых случаях выделяемая теплота полезна (в разнообразных электронагревательных приборах), часто выделение теплоты приводит к бесполезным потерям энергии при передаче электроэнергии.

Магнитное действие

тока проявляется в создании магнитного поля, приводящего к появлению взаимодействия между электрическими токами и движущимися заряженными частицами.

Механическое действие

тока используется в разнообразных электродвигателях, преобразующих энергию электрического тока в механическую энергию.

Химическое действие

проявляется в том, что протекающий электрический ток, может инициировать различные химические реакции. Так, например, процесс производства алюминия и ряда других металлов основан на явлении электролиза – реакции разложения расплавов оксидов металлов под действием электрического тока.

Световое действие

электрического тока проявляется в появлении светового излучения при прохождении электрического тока. В некоторых случаях свечение является следствие теплового разогрева (например, в лампочках накаливания), в других движущиеся заряженные частицы непосредственно вызывают появление светового излучения.

В самом названии явления (электрический ток) слышны отголоски старых физических воззрений, когда все электрические свойства приписывались гипотетическое электрической жидкости, заполняющей все тела. Поэтому при описании движения заряженных частиц используется терминология аналогичная используемой при описании движения обычных жидкостей. Указанная аналогия простирается дальше простого совпадения терминов, многие законы движения «электрической жидкости аналогичны законам движения обычных жидкостей, а частично знакомые вам законы постоянного электрического тока по проводам аналогичны законам движения жидкости по трубам. Поэтому настоятельно рекомендуем вам повторить раздел, в котором описаны эти явления – гидродинамику.

Химическое действие тока

Электрический ток, проходя через растворы некоторых кислот, щелочей или солей, вызывает выделение из них вещества. Это вещество осаждается на электродах – пластинках, опущенных в раствор и подключенных к источнику тока.

Такое действие тока используют в гальванопластике – покрытии металлом некоторых поверхностей. Применяют никелирование, омеднение, хромирование, а, так же, серебрение и золочение поверхностей.

С помощью раствора медного купороса можно продемонстрировать выделение вещества под действием тока. Водный раствор этой соли имеет голубоватый оттенок. Пропуская электрический ток (ссылка) через раствор, можно обнаружить выделение меди на одном из электродов (рис. 3).

Действие электрического тока на организм человека

Электротравматизм по сравнению с другими видами производственного травматизма составляет небольшой процент, но по числу случаев со смертельным исходом занимает одно из первых мест. Из каждых 100 расследованных случаев, связанных с электрическим током, 90 заканчиваются летальным исходом. Вот почему обслуживание-электрических установок относят к работам, выполняемым в условиях повышенной опасности. Опасность поражения электрическим током усугубляется еще и тем, что пострадавший не может сам оказать себе помощь.

Действие электрического тока на человека носит сложный и разнообразный характер. При замыкании электрической цепи через организм человека ток оказывает термическое, электролитическое, биологическое и механическое воздействие.

Термическое действие тока проявляется в виде ожогов как наружных участков тела, так и внутренних органов, в том числе кровеносных сосудов и нервных тканей. Электроожоги излечиваются значительно труднее и медленнее обычных термических, сопровождаются внезапно возникающими кровотечениями, омертвением отдельных участков тела.

Тело человека является проводником электрического тока. Однако разные ткани тела оказывают току неодинаковое сопротивление. Большое сопротивление оказывают кожа, особенно ее верхний слой, называемый эпидермисом, кости и жировая ткань. Малое сопротивление оказывают внутренние органы, головной и спинной мозг, кровь, оголенные мышцы. Сопротивление Rlt зависит от пола и возраста людей. У женщин это сопротивление меньше, чем у мужчин, у детей — меньше, чем у взрослых, у молодых людей — меньше, чем у пожилых. Объясняется это толщиной и степенью огрубения верхнего слоя кожи.

Читайте так же:
Автоматические выключатели с тепловым расцепителем каталог

Сопротивление тела человека воздействию электрического тока -величина переменная и зависит от многих факторов, в том числе от параметров электрической цепи, физиологического состояния человека, условий окружающей среды и т. п. Во всех расчетах по обеспечению электробезопасности принимают 1000 Ом, т. е. такое сопротивление, когда человек находится в наихудших для себя условиях (нервно-психическое или болезненное состояние, повышенная влажность окружающей среды, наличие большого числа металлических конструкций и т. п.).

Основным поражающим фактором является сила электрического тока, проходящего через тело человека.

Человек начинает ощущать воздействие переменного тока величиной 0,5 . 1,5 мА (1 А = 10 3 мА). Это порог ощутимого тока, который не представляет серьезной опасности, так как человек самостоятельно может нарушить контакт с токоведущей частью электроустановки.

Величину тока 10 . 15 мА называют порогом неотпускающего тока. Эта величина тока при промышленной частоте 50 Гц вызывает непроизвольное сокращение мышц кисти руки и предплечья, сопровождающееся резкой болью. При воздействии этого тока на организм человек не может разжать руку, отбросить от себя провод, т. е. он не в состоянии самостоятельно нарушить контакт с токоведущей частью и оказывается как бы прикованным к ней.

Ток 40 мА поражает органы дыхания и сердечно-сосудистую систему, вызывает фибрилляцию сердца. Фибрилляция — это такое состояние сердца, когда оно перестает сокращаться как единое целое в определенной последовательности. При этом происходят отдельные подергивания волокон сердечной мышцы, насосная функция сердца прекращается. Отсутствие кровообращения вызывает в организме недостаток кислорода, что в свою очередь приводит к прекращению дыхания. Такое состояние человека называют клинической смертью -переходным периодом от жизни к смерти. Однако в этот период почти во всех тканях организма еще продолжаются слабые обменные процессы, достаточные для поддержания минимальной жизнедеятельности. При клинической смерти первыми начинают погибать чувствительные к кислородному голоданию клетки коры головного мозга, с деятельностью которых связаны сознание и мышление. В связи с этим длительность клинической смерти определяется временем с момента прекращения сердечной деятельности и дыхания до начала гибели клеток головного мозга. В большинстве случаев это время составляет 4 . 5 мин, но не более 7 мин. Человека, находящегося в состоянии клинической смерти, вернуть к жизни можно, оказав ему оперативную помощь. При доступе свежего воздуха необходимо сделать искусственное дыхание или использовать дефибриллятор — аппарат для прекращения фибрилляции.

Ток 100 мА (0,1 А) считается смертельным, так как происходят немедленная остановка сердца и паралич дыхания.

Тело человека имеет участки, особенно уязвимые к воздействию электрического тока, так называемые акупунктурные точки. Их электрическое сопротивление всегда меньше других зон тела. Наиболее уязвимыми являются тыльная часть кисти, рука на участке выше кисти, шея, висок, спина, передняя часть ноги, плечо.

Чем продолжительнее действие тока, тем больше вероятность тяжелого или смертельного исхода. Такая зависимость объясняется тем, что с увеличением времени действия тока резко снижается сопротивление организма , а величина тока, прошедшего через тело, возрастает при постоянном напряжении электрической сети

Электролитическое действие тока вызывает электролиз крови и лимфатической жидкости, в результате чего нарушается их химический состав и ткани организма в целом.

Биологическое воздействие выражается в раздражении живых тканей организма. Электрический ток нарушает действие биотоков, управляющих внутренним движением ткани, вызывает непроизвольное, противоестественное судорожное сокращение мышц сердца и легких.

Механическое действие тока, на организм является причиной электрических травм. Характерными видами электротравм являются ожоги, электрические знаки, металлизация кожи, электроофтальмия, разрывы тканей, вывихи суставов и переломы костей.

Ожоги бывают двух видов — токовый, или контактный, и дуговой. Токовый ожог возникает в результате контакта человека с токоведущей частью и является следствием преобразования электрической энергии в тепловую.

Дуговой ожог обусловлен воздействием на тело электрической дуги, обладающей высокой температурой и большой энергией. Дуговой ожог возникает в электроустановках различных напряжений, часто является следствием случайных коротких замыканий, отключений разъединителей и рубильников под напряжением. В этом случае дуга может переброситься на человека и через него пройдет ток большой величины — до нескольких десятков ампер.

Электрические знаки представляют собой четко очерченные пятна серого или бледно-желтого цвета на поверхности кожи человека, подвергшегося действию тока. В большинстве случаев электрические знаки безболезненны и их лечение заканчивается благополучно.

Металлизация кожи — проникновение в ее верхние слои мельчайших частичек металла, расплавившегося под действием электрической дуги. С течением времени больная кожа сходит, пораженный участок приобретает нормальный вид и болезненные ощущения исчезают.

Электроофтальмия — воспаление наружных оболочек глаз, возникающее в результате воздействия мощного потока ультрафиолетовых лучей электрической дуги. При поражении глаз лечение может оказаться длительным и сложным.

Разрывы тканей, вывихи суставов и переломы костей могут произойти в результате резких, непроизвольных судорожных сокращений мышц под действием тока или при падении вниз при выполнении работ на электроустановке, расположенной на высоте.

Исход поражения электрическим током во многом зависит от индивидуальных особенностей человека. Установлено, что здоровые и физически крепкие люди легче переносят воздействие электрического тока, чем больные и слабые. Повышенной восприимчивостью к току обладают лица, страдающие болезнями кожи, сердечно-сосудистой системы, органов внутренней секреции и др. Состояние возбуждения нервной системы, депрессии, утомления, опьянения способствует более тяжелому исходу электротравматизма.

Действие электрического тока не всегда проходит бесследно, возможны отдаленные последствия электротравмы. Наблюдались случаи развития диабета, заболеваний щитовидной железы, половых органов, органического изменения сердечно-сосудистой системы и вегетативно-эндокринного расстройства.

И силён электрический ток

Моя работа названа словами Александра Блока: «И силен электрический ток!» В этих словах очень точно отражено значение электрического тока и многогранность этого явления: наблюдение в природе, применение в технике и быту.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector