Berezka7km.ru

Березка 7км
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Теплопроводность через стенку

Теплопроводность через стенку

Под теплопередачей через стенку понимают процесс передачи теплоты между двумя средами через непроницаемую стенку любой геометрической формы в стационарном и нестационарном режимах теплообмена. Стенка может быть многослойной.

Рассмотрим стационарный режим теплопередачи через плоскую, цилиндрическую и сферическую стенки при котором теплопередача — величина постоянная и температурное поле не изменяется во времени и зависит только от координаты. В этом случае при условии постоянства теплофизических свойств тела температура в плоской стенке изменяется линейно, а в цилиндрической — по логарифмическому закону, т.е.

Q = const и T = f(x) — линейная (при плоской стенке) или логарифмическая функция (при круглой стенке).

Согласно второму закону термодинамики процесс теплопередачи идет от среды с большей температурой к среде с меньшей температурой.

Теплопередача через непроницаемую стенку включает в себя следующие процессы:

  1. теплоотдачу от горячей среды к стенке;
  2. теплопроводность внутри стенки;
  3. теплоотдачу от стенки к холодной среде.

Теплопередача через плоскую стенку (граничные условия первого рода)

Теплопроводность — первое элементарное тепловое явление переноса теплоты посредством теплового движения микрочастиц в сплошной среде, обусловленное неоднородным распределением температуры.

Совокупность значений температуры для всех точек пространства в данный момент времени называется температурным полем.

Если температурное поле не изменяется во времени, то мы имеем дело со стационарным тепловым режимом.

Тепловой поток Q [Вт] — это количество теплоты, передаваемой в единицу времени (1 Дж/с=1 Вт).

Поверхностная плотность теплового потока рассчитывается по формуле:

где Q — тепловой поток [Вт]; F — площадь стенки [м 2 ].

На основании закона Фурье q=-λdT/dx, значение плотности теплового потока для однослойной стенки будет определяться по формуле:

где δ = dx — толщина стенки, λ

λ/δ; [Вт/м 2 *К] — коэфициент тепловой проводности стенки.

а обратная величина —

R = δ/λ; [м 2. К/Вт] — термическое сопротивление стенки.

Для теплового потока формулу так же можно представить в виде:

Общее количество теплоты проходящее через площадь стены S за время t можно представить как:

Распределение температуры в плоской стенке

Рассмотрим изменение температуры в нашей стене. Так как у нас тепловой поток постоянный, то dT/dx = const=C1; T=C1х+С2 (1). Определим С1 и С2 через граничные условия.

При х=0 T=T1, подставим в уравнение (1) и получим T12.
При х=δ T=T2, подставим в уравнение (1) и получим T21*δ+С2, T21*δ+T1, получим: С1=(Т2-T1)/δ. Теперь подставим в уравнение (1) найденные С1 и С2, получим следующее распределение температуры в нашей стене:

Если нам нужно узнать на какой глубине стены Т=То, то формула преобразуется в следующий вид:

Теплопроводность через многослойную стенку

Если у нас есть стенка из нескольких (n) слоев с разными коэффициентами теплопроводности λi и разной толщиной δi.

Термическое сопротивление стенки считается так:

Для теплового потока формула будет иметь вид:

Температура на границе слоя вычисляется по следующей формуле:

Например, если нужно вычислить температуру между 3-м и 4-м слоем, формула будет такая:

Эквивалентная теплопроводность многослойной стенки:

Теплопередача через плоскую стенку в граничащую среду (граничные условия третьего рода)

Теплопередача — это более сложный процесс теплообмена между жидкими и газообразными средами, разделенными твердой стенкой. Теплопередача включает в себя и процесс теплопроводности, и процесс теплоотдачи.

Коэффициент теплоотдачи α, Вт/(м 2 ·К) — это количество теплоты, отдаваемое в единицу времени единицей поверхности при разности температур между поверхностью и окружающей средой, равной одному градусу.

Коэффициент теплопередачи k, Вт/(м 2 ·К), характеризует тепловой поток, проходящий через единицу площади поверхности стенки при разности температуры сред, равной одному градусу:

q = k * (Tвозд.внутри — Tвозд.снаружи); Вт/м 2

Коэффициент теплопередачи для n слойной стенки:

Термические сопротивления теплоотдаче на внешних поверхностях стенки будут равны:

Тогда общее термическое сопротивление теплопередаче будет равно:

Температуры на поверхности стенки можно определить по формулам:

Теплопроводность через цилиндрическую стенку (граничные условия первого рода)

Теплообменные аппараты в большинстве случаев имеют не плоские, а цилиндрические поверхности, например рекуператоры типа «труба в трубе», кожухотрубные водонагреватели и т.д. Поэтому возникает необходимость рассмотрения основных принципов расчета цилиндрических поверхностей.

Согласно закону Фурье, количество теплоты, проходящее в единицу времени через этот слой, равно:

Подставим значения граничные значение и вспомним, что разность логарифмов равна логарифму отношению аргументов, получим:

Распределение температур внутри однородной цилиндрической стенки подчиняется логарифмическому закону, и уравнение температурной кривой имеет вид:

Читайте так же:
Тепловая защита автоматического выключателя обозначение

Количество теплоты, проходящее через стенку трубы, может быть отнесено либо к единице длины трубы L, либо к единице внутренней F1 или внешней F2 поверхности трубы. При этом расчетные формулы принимают следующий вид:

Все материалы, представленные на сайте, носят исключительно справочный и ознакомительный характер и не могут считаться прямой инструкцией к применению. Каждая ситуация является индивидуальной и требует своих расчетов, после которых нужно выбирать нужные технологии.

Не принимайте необдуманных решений. Имейте ввиду, что то что сработало у других, в ваших условиях может не сработать.

Администрация сайта и авторы статей не несут ответственности за любые убытки и последствия, которые могут возникнуть при использовании материалов сайта.

Теплоотдача теплоносителей

Теплоотдача – это физический процесс переноса теплоты (холода) между поверхностью твердых тел и омывающими их рабочими средами (теплоносителями). При этом теплоносителями могут быть: газы, жидкости, расплавы. Она происходит в результате конвекции, лучистого теплообмена.

В теплоносителе с неоднородным полем температур при вынужденном или естественном перемещении макроскопических элементов наряду с конвекцией происходит процесс переноса тепла теплопроводностью. Совместный процесс конвекции и теплопроводности называют конвективным теплообменом. Конвективный теплообмен между теплоносителем и обтекаемой им поверхностью называют теплоотдачей.

В зависимости от движения теплоносителя, которое бывает свободным или вынужденным, теплоотдача характеризуется разными значениями. Также на величину теплоотдачи влияетизменение его агрегатного состояния.

Для характеристики интенсивности процесса теплообмена используется коэффициент теплоотдачи теплоносителя. Численно коэффициент теплоотдачи равен тепловому потоку, приходящемуся на единицу поверхности при температурном напоре, равный единице, α – Вт/(м2×К). Он показывает количество теплоты, которое передается в единицу времени через расчетную единицу поверхности. Во внимание берется разность температур между рабочей средой и контактирующей с ней поверхностью. Коэффициент теплоотдачи зависит от скорости потока носителя тепла, вида течения, какова геометрия поверхности твердого тела и т.д.

Это сложная величина и ее невозможно определить общей формулой. Обычно коэффициент теплоотдачи находят экспериментально. Теплоотдача теплоносителей в условиях естественной конвекции – распространенное понятие, с которым связано как эксплуатация бытовых устройств, так и технических промышленных аппаратов и коммуникаций. Пример бытового теплообменника – обогревательные батареи, устанавливаемые для отопления помещений.

В компании «Савиа», которая специализируется на производстве широкой номенклатуры теплоносителей, можно заказать высококачественные товарные марки их различных видов, отвечающих необходимым требованиям предприятий различных отраслей промышленности и пожеланиям покупателей.

От чего зависит коэффициент теплоотдачи?

На значение коэффициента теплоотдачи влияют многие факторы и прежде всего, теплофизические свойства теплоносителя, его фазовое состояние, вид движения (естественное или вынужденное) и режим течения теплоносителя (ламинарный, переходный, турбулентный), а также характеристика контактируемой поверхности. К параметрам, от которых зависит величина коэффициента теплоотдачи, относятся:

  • скорость движения, плотность и вязкость теплоносителя (переменные, определяющие режим течения);
  • тепловые свойства (удельная теплоемкость, теплопроводность, коэффициент объемного расширения);
  • геометрические параметры трубопроводов, теплообменников, конструкции запорной арматуры теплообменной системы (форма, размеры, а также шероховатость их внутренних стенок).

Теплоотдача в условиях вынужденного движения

Во время ламинарного движения, когда скорость и температура на начальном участке трубопроводов распределяется равномерно, у поверхности ее стенок (на границе «теплоноситель – стенка») появляются пограничные слои. Чем дальше они находятся от входа, тем толще. Спустя некоторое расстояние они смыкаются. При этом коэффициент температурного расширения теплоносителя изменяется: на входе он имеет максимальный показатель.

Если рассматривается турбулентное движение, во внимание берутся условия входа теплоносителя в трубопроводы. Наличие острых кромок, большой угол ввода приводят к увеличению возмущения потока. В итоге коэффициент теплоотдачи увеличивается на участке стабилизации.

Иногда создается искусственная шероховатость на поверхности труб (имеет вид насечек), что при соотношении шага между находящимися рядом выступами и их высотой приводит к увеличению коэффициентных показателей теплоотдачи до 2,5 раз. В условиях ламинарного режима величина коэффициента не зависит от наличия шероховатостей.

Чтобы сделать теплообмен более интенсивным, применяются эффективные технологические методы: создаются пульсации потока рабочей среды, проводятся процессы в тонких каналах, когда теплоноситель течет в виде тонкой пленки.

Естественная конвекция и теплоотдача

Естественная конвекция и теплоотдача (конвективный теплообмен) возможны при движении теплоносителя, под влиянием разности его плотностей при различных температурах в определенных точках его объема. Микрочастицы рабочей среды, которые имеют более высокую температуру и соответственно имеют меньшую плотность, поднимаются вверх. А те, более холодные, стремятся вниз, но в результате нагревания также устремляются вверх.

Читайте так же:
Уставка теплового расцепителя автоматического выключателя это

В итоге показатель отдачи тепла зависит от размеров системы теплообмена, формы и площади поверхности охлаждения или нагрева, ее точных температурных показателей и физических характеристик теплоносителя. Однако, в инженерной практике конвективный теплообмен внутри теплоносителя при расчётах, как правило, не рассматривается.

При свободной (естественной) конвекции коэффициент отдачи тепла значительно ниже (в сотни раз), чем во время вынужденного турбулентного движения.

Коэффициент теплоотдачи с поверхности провода

Определение нормируемых эксплуатационных часовых тепловых потерь производится на основании данных о конструктивных характеристиках всех участков тепловой сети (типе прокладки, виде тепловой изоляции, диаметре и длине трубопроводов и т.п.) при среднегодовых условиях работы тепловой сети исходя из норм тепловых потерь.

Нормы тепловых потерь (плотность теплового потока) для участков тепловых сетей вводимых в эксплуатацию, или запроектированных до 1988 года принимаются по таблицам.

Нормы тепловых потерь (плотность теплового потока) для участков тепловых сетей вводимых в эксплуатацию после монтажа, а также реконструкции или капитального ремонта, при которых производились работы по замене тепловой изоляции после 1988 года принимаются по таблицам 8 — 22.

Определение часовых тепловых потерь при среднегодовых условиях работы тепловой сети по нормам тепловых потерь осуществляется раздельно для подземной и надземной прокладок по формулам:

Для подземной прокладки суммарно по подающему и обратному трубопроводам:

Формула 44. для подземной прокладки суммарно по подающему и обратному трубопроводам:

Для надземной прокладки раздельно по подающему и обратному трубопроводам:

Формула 45. для подземной прокладки суммарно по подающему и обратному трубопроводам:

Формула 46. для подземной прокладки суммарно по подающему и обратному трубопроводам:

, где qнорм, qнорм.под., qнорм.обр. — удельные (на один метр длины) часовые потери, определённые по нормам тепловых потерь для каждого диаметра трубопровода при среднегодовых условиях работы тепловой сети, для подземной прокладки суммарно для подающего и обратного трубопроводам и раздельно для надземной прокладки, ккал/(м*ч);

L -длина трубопроводов на участке тепловой сети с диаметром в двухтрубном исчислении при подземной прокладке и по подающей (обратной) линии при надземной прокладке, м;

β — коэффициент местных тепловых потерь, учитывающий тепловые потери арматурой, компенсаторами, опорами. Принимается для подземной канальной и надземной прокладок равным 1,2 при диаметрах трубопроводов до 0,15 м и 1,15 при диаметрах 0,15 м и более, а также при всех диаметрах бесканальной прокладки.

Значения удельных часовых тепловых потерь принимаются по нормам тепловых потерь для тепловых сетей, тепловая изоляция которых выполнена в соответствии с [5], или по нормам тепловых потерь (нормы плотности теплового потока) для тепловых сетей с тепловой изоляцией, выполненной в соответствии с [6].

Значения удельных часовых тепловых потерь при среднегодовой разности температур сетевой воды и окружающей среды (грунта или воздуха), отличающейся от значений, приведенных в нормах [5] и [6], определяются путем линейной интерполяции или экстраполяции.

Интерполяцию проводят на среднегодовую температуру воды в соответствующем трубопроводе тепловой сети или на разность среднегодовых температур воды и грунта для данной тепловой сети (или на разность среднегодовых температур воды в соответствующих линиях и окружающего воздуха для данной тепловой сети).

Среднегодовую температуру окружающей среды определяют на основании средних за год температур наружного воздуха и грунта на уровне заложения трубопроводов, принимаемых по климатологическим справочникам или по данным метеорологической станции. Среднегодовые температуры воды в подающей и обратной линиях тепловой сети находят как среднеарифметические из среднемесячных температур в соответствующих линиях за весь период работы сети в течение года. Среднемесячные температуры воды определяют по утвержденному эксплуатационному температурному графику при среднемесячной температуре наружного воздуха.

Для тепловых сетей с тепловой изоляцией, выполненной в соответствии с [7], табл.6, 7 удельные часовые тепловые потери определяются:

Для подземной прокладки суммарно по подающему и обратному трубопроводам ккал/(м*ч) по формуле:

Формула 47. для подземной прокладки суммарно по подающему и обратному трубопроводам:

, где q T1 норм, q T2 норм — удельные часовые тепловые потери суммарно по подающему и обратному трубопроводам каждого диаметра при двух смежных (соответственно меньшем и большем, чем для данной сети) табличных значениях среднегодовой разности температур сетевой воды и грунта, ккал/(м*ч);

Δ t ср.г. ср. — значение среднегодовой разности температур сетевой воды и грунта для данной тепловой сети, °C;

Δ t T1 ср., Δ t T2 ср. — смежные (соответственно меньшее и большее, чем для данной сети) табличные значения среднегодовой разности температур сетевой воды и грунта, °C;

Читайте так же:
Описать тепловое химическое магнитное действие электрического тока

Значение среднегодовой разности температур сетевой воды и грунта Δ t ср.г. ср. определяется по формуле:

Формула 48.

, где t ср.г. под., t ср.г. обр. — среднегодовая температура сетевой воды соответственно в подающем и обратном трубопроводах данной тепловой сети, °C;

Δ t ср.г. ср. — среднегодовая температура грунта на глубине заложения трубопроводов, °C;

Для надземной прокладки раздельно по подающему и обратному трубопроводам qнорм.под.,qнорм.обр., ккал/(м*ч), по формулам:

Формула 49.

, где q T1 норм.под., q T2 норм.под. — удельные часовые тепловые потери по подающему трубопроводу для данного диаметра при двух смежных (соответственно меньшем и большем) табличных значениях среднегодовой разности температур сетевой воды и наружного воздуха, ккал/(м*ч);

q T1 норм.обр., q T2 норм.обр. — удельные часовые тепловые потери по обратном трубопроводу для данного диаметра при двух смежных (соответственно меньшем и большем) табличных значениях среднегодовой разности температур сетевой воды и наружного воздуха, ккал/(м*ч);

Δ t ср.г. ср.под, Δ t ср.г. ср.обр — среднегодовая разность температур соответственно сетевой воды в подающем и обратном трубопроводах и наружного воздуха для данной тепловой сети, °C;

Δ t T1 ср.под, Δ t T2 ср.под — смежные табличные значения (соответственно меньшее и большее) среднегодовой разности температур сетевой воды в подающем трубопроводе и наружного воздуха, °C;

Δ t T1 ср.обр, Δ t T2 ср.обр — смежные табличные значения (соответственно меньшее и большее) среднегодовой разности температур сетевой воды в обратном трубопроводе и наружного воздуха, °C;

Среднегодовые значения разности температур для подающего Δ t ср.г ср.под и обратного Δ t ср.г ср.обр трубопроводов определяется как разность соответствующих среднегодовых температур сетевой воды t ср.г ср.под , t ср.г ср.обр и среднегодовой температуры наружного воздуха t ср.г в..

Определение часовых тепловых потерь тепловыми сетями, теплоизоляционные конструкции которых выполнены в соответствии с нормами [6], принципиально не отличается от вышеприведенного. В то же время при работе с [6] необходимо учитывать следующее:

Нормы приведены раздельно для тепловых сетей с числом часов работы в год более 5000, а также 5000 и менее;

Для подземной прокладки тепловых сетей нормы приведены раздельно для канальной и бесканальной прокладок;

Нормы приведены для абсолютных значений среднегодовых температур сетевой воды в подающем и обратном трубопроводах, а не для разности среднегодовых температур сетевой воды и окружающей среды;

Удельные тепловые потери для участков подземной канальной и бесканальной прокладок для каждого диаметра трубопровода находятся путем суммирования тепловых потерь, определенных по нормам раздельно для подающего и обратного трубопроводов.

Среднегодовое значение температуры сетевой воды t ср.г ср.под, t ср.г ср.обр определяется как среднее значение из ожидаемых среднемесячных значений температуры воды по принятому температурному графику регулирования отпуска теплоты, соответствующих ожидаемым значениям температуры наружного воздуха за весь период работы тепловой сети в течение года.

Ожидаемые среднемесячные значения температуры наружного воздуха и грунта определяются как средние значения из соответствующих статистических климатологических значений за последние 5 лет по данным местной метеорологической станции или по климатологическим справочникам.

Среднегодовое значение температуры грунта t ср.г гр. определяется как среднее значение из ожидаемых среднемесячных значений температуры грунта на глубине залегания трубопроводов.

Теплоотдача 1 м. стальной трубы

Расчёт теплоотдачи трубы требуется при проектировании отопления, и нужен, чтобы понять, какой объём тепла потребуется, чтобы прогреть помещения и, сколько времени на это уйдёт. Если монтаж производится не по типовым проектам, то такой расчёт необходим.

Стальная труба

Для каких систем нужен расчёт?

Коэффициент теплоотдачи считается для тёплого пола. Всё реже эта система делается из стальных труб, но если в качестве теплоносителей выбраны изделия из этого материала, то произвести расчёт необходимо. Змеевик – ещё одна система, при монтаже которой необходимо учесть коэффициент отдачи тепла.

Радиатор из стальных труб

Радиатор из стальных труб

Регистры – представлены в виде толстых труб, соединённых перемычками. Теплоотдача 1 метра такой конструкции в среднем – 550 Вт. Диаметр же колеблется в пределах от 32 до 219 мм. Сваривается конструкция так, чтобы не было взаимного подогрева элементов. Тогда теплоотдача увеличивается. Если грамотно собрать регистры, то можно получить хороший прибор обогрева помещения – надёжный и долговечный.

Как оптимизировать теплоотдачу стальной трубы?

В процессе проектирования перед специалистами встаёт вопрос, как уменьшить или увеличить теплоотдачу 1 м. стальной трубы. Для увеличения требуется изменить инфракрасное излучение в большую сторону. Делается это посредством краски. Красный цвет повышает теплоотдачу. Лучше, если краска матовая.

Читайте так же:
Автоматические выключатели с регулированием тепловой защиты

Расчет

Другой подход – установить оребрение. Оно монтируется снаружи. Это позволит увеличить площадь теплоотдачи.

В каких же случаях требуется параметр уменьшить? Необходимость возникает при оптимизации участка трубопровода, расположенного вне жилой зоны. Тогда специалисты рекомендуют утеплить участок – изолировать его от внешней среды. Делается это посредством пенопласта, специальных оболочек, которые производятся из особого вспененного полиэтилена. Нередко используется и минеральная вата.

Производим расчёт

Формула, по которой считается теплоотдача следующая:

  • К – коэффициент теплопроводности стали;
  • Q – коэффициент теплоотдачи, Вт;
  • F – площадь участка трубы, для которого производится расчёт, м 2 dT – величина напора температуры (сумма первичной и конечной температур с учётом комнатной температуры), ° C.

Коэффициент теплопроводности K выбирается с учётом площади изделия. Зависит его величина и от количества ниток, проложенных в помещениях. В среднем величина коэффициента лежит в пределах 8-12,5.

teplootdacha_stalnoj_truby_03

dT называется также температурным напором. Чтобы параметр высчитать, нужно сложить температуру, которая была на выходе из котла, с температурой, которая зафиксирована на входе в котёл. Полученное значение умножается на 0,5 (или делится на 2). Из этого значения вычитается комнатная температура.

Если стальная труба изолирована, то полученное значение умножается на КПД теплоизоляционного материала. Он отражает процент тепла, который был отдан при прохождении теплоносителя.

teplootdacha_stalnoj_truby_01

Рассчитываем отдачу для 1 м. изделия

Посчитать теплоотдачу 1 м. трубы, выполненной из стали, просто. У нас есть формула, осталось подставить значения.

Q = 0,047*10*60 = 28 Вт.

  • К = 0.047, коэффициент теплоотдачи;
  • F = 10 м 2 , площадь трубы;
  • dT = 60° С, температурный напор.

Об этом стоит помнить

Хотите сделать систему отопления грамотно? Не стоит подбирать трубы на глазок. Расчёты теплоотдачи помогут оптимизировать траты на строительство. При этом можно получить хорошую отопительную систему, которая прослужит долгие годы.

Теоретические основы электрических кабелей

Кабель, проложенный в воздухе, охлаждается вследствие конвекции воздуха и теплового излучения с поверхности кабеля. Удельное тепловое сопротивление кабеля, проложенного в воздухе, зависит от состояния поверхности кабеля. Удельное тепловое сопротивление металлической оболочки (алюминий, свинец, сталь) мало по сравнению с тепловыми сопротивлениями любых защитных покровов кабеля (табл. 4-1); это обеспечивает более высокую теплоотдачу в окружающую среду. Тепловое сопротивление поверхности кабеля при прокладке его на открытом воздухе (расстояние между центрами кабелей равно двум его внешним диаметрам).

где σв — удельное сопротивление теплопереходу с поверхности кабеля в воздух, равное от 800 до 1 200 град × см 2 /вт, зависящее от наличия брони на кабеле, его диаметра и нагруженности во время эксплуатации.

В зависимости от скорости и направления движения воздуха (например, при обдувке) охлаждение кабеля может быть более эффективным. Для практических расчетов принимают среднее значение коэффициента теплопередачи для свободной конвекции. При прокладке кабелей в туннелях и каналах учитывается общий нагрев окружающего воздуха.

Кабель, проложенный в земле, охлаждается путем передачи тепла от наружной поверхности к окружающей его среде. С целью обеспечения более плотного облегания грунтом кабель укладывают на дно траншеи на подушку из песка и засыпают мягкой землей с последующей тщательной утрамбовкой ее. Наличие крупных кусков земли около кабеля или неплотное ее прилегание к кабелю повышает удельное тепловое сопротивление среды; это приводит к ухудшению охлаждения кабеля во время эксплуатации. Если в одной траншее укладывается несколько кабелей, то расстояние между ними должно быть не меньше диаметра кабеля. Нагревание параллельно проложенных кабелей определяется суммой тепловых полей в грунте от всех кабелей. Тепловое сопротивление почвы, окружающей кабель,

где aэ — удельное тепловое сопротивление почвы, град × см/вт, сильно зависящее от структуры почвы и содержания в ней влаги (табл. 4-1). Правильный выбор величины удельного теплового сопротивления позволяет существенно снизить стоимость кабельных линий.

Суточные колебания температуры грунта на глубине прокладки кабелей практически отсутствуют. Сезонные колебания температуры могут быть значительными и должны учитываться при расчетах.

Кабель, проложенный в проточной воде, находится в наилучших условиях. Вода обеспечивает хороший от вод тепла с наружной поверхности кабеля. Благодаря наличию в воде течений и конвекционных токов теплового поля вокруг кабеля в воде практически не образуется. В этом случае при расчете допустимой нагрузки на кабель тепловое сопротивление окружающей среды приравнивают нулю. При наличии отдельных участков кабеля, не находящихся в воде, расчет их производят по условиям с наивысшим тепловым сопротивлением. Прокладку кабеля по дну водных преград с заглублением в грунт для предохранения от механических повреждений приравнивают к прокладке во влажной почве.

Читайте так же:
Использование теплового действия электрического тока в устройстве теплиц инкубаторов

Наименее благоприятны условия охлаждения при прокладке кабеля в бетонных блоках, находящихся в земле. В этом случае кабель без брони протягивается в отверстие блока, и тепловой поток, выходящий из кабеля, преодолевая сначала сопротивление прослойки воздуха, проходит через стенки блока в окружающую почву. Тепловые сопротивления тела блоков (Sбл), применяемых для прокладки кабелей, относятся как к вертикальному, так и к горизонтальному расположениям их в земле, когда все отверстия блоков заполнены работающими кабелями и потери в отдельных кабелях различаются не более чем на 20%. Тепловое сопротивление блока в земле

где σбл — удельное тепловое сопротивление окружающей блоки почвы, град-см/вт; А — высота блока, см; В — ширина блока, см; Н — глубина центра блока от поверхности земли, см.

При тепловом расчете кабеля, прокладываемого в блоке (рис. 4-5), учитывают тепловое сопротивление воздуха между оболочкой кабеля и стенкой канала блока. Превышение температуры оболочки кабеля над температурой грунта

где р — потери в кабеле; — разность температур оболочки кабеля и стенки канала блока; — разность температур стенки канала блока и грунта; тепловое сопротивление воздуха в канале блока.

В кабелях, проложенных в стальной трубе, при размещений их треугольником с вершиной вверху наибольшую температуру имеет верхний кабель. Поэтому производится тепловой расчет верхнего кабеля. Экран кабеля и стальную трубу принимают за изотермические поверхности. Основной перепад температур в масле или газе будет около поверхностей кабеля и трубопровода. В средней части зоны, заполненной маслом или газом, перепад температур практически отсутствует.

Тепловое сопротивление зоны масла рассматривают как сумму тепловых сопротивлений от поверхности кабеля в среду, заполняющую трубопровод (Sк.м.), и от среды к стенке трубопровода (Sм.т.):

где ам — удельное сопротивление теплопереходу в масло, заполняющее трубопровод, равное 425 градoсм 2 /вт; DK — диаметр кабеля по экрану; DT — внутренний диаметр трубопровода; k1=0,835 — коэффициент, определяющий часть периметра верхнего кабеля, участвующего в теплоотводе через масло; k2 ≈0,35÷0,40 — коэффициент, определяющий часть периметра внутренней поверхности трубопровода, участвующей в теплоотводе через масло. При расчете полного теплового сопротивления кабеля в стальной трубе, заполненной маслом, учитывается также теплоотвод от поверхности верхнего кабеля к трубопроводу за счет соприкосновения кабелей между собой и трубопроводом. Для кабеля с экраном из медных лент и спиралей из полукруглых проволок это сопротивление составляет примерно 230 градoсм/вт. Удельное тепловое сопротивление азота при давлении 140 н/см 2 равно 500 град o см/вт; при снижении давления до 70 н/см 2 удельное сопротивление возрастает на 27%, а при атмосферном давлении — на 100%.

В случае, если Вы не нашли информации по интересующей Вас продукции, обращайтесь на форум и Вы непременно получите ответ на поставленный вопрос. Либо воспользуйтесь формой для обращения к администрации портала.

Для справки: Раздел «Справочник» на сайте RusCable.Ru предназначен исключительно для ознакомительных целей. Справочник составлен путём выборки данных из открытых источников, а также благодаря информации, поступающей от заводов-изготовителей кабельной продукции. Раздел постоянно наполняется новыми данными, а также совершенствуется для удобства в использовании.

Список использованной литературы:

Электрические кабели, провода и шнуры.
Справочник. 5-е издание, переработанное и дополненное. Авторы: Н.И.Белоруссов, А.Е.Саакян, А.И.Яковлева. Под редакцией Н.И.Белоруссова.
(М.: Энергоатомиздат, 1987, 1988)

«Кабели оптические. Заводы-изготовители. Общие сведения. Конструкции, оборудование, техническая документация, сертификаты»
Авторы: Ларин Юрий Тимофеевич, Ильин Анатолий Александрович, Нестерко Виктория Александровна
Год издания 2007. Издательство ООО «Престиж».

Справочник «Кабели, провода и шнуры».
Издательство ВНИИКП в семи томах 2002 год.

Кабели, провода и материалы для кабельной индустрии: Технический справочник.
Сост. и редактирование: Кузенев В.Ю., Крехова О.В.
М.: Издательство «Нефть и газ», 1999

Кабельные изделия. Справочник
Автор: Алиев И.И., издание 2-е, 2004

Монтаж и ремонт кабельных линий. Справочник электромонтажника
Под редакцией А.Д. Смирнова, Б.А. Соколова, А.Н. Трифонова
2-е издание, переработанное и дополненное, Москва, Энергоатомиздат, 1990

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector