Berezka7km.ru

Березка 7км
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

СХЕМЫ ВКЛЮЧЕНИЯ ТРЕХФАЗНЫХ СЧЕТЧИКОВ В ЭЛЕКТРОУСТАНОВКАХ НАПРЯЖЕНИЕМ ВЫШЕ 1000 В

СХЕМЫ ВКЛЮЧЕНИЯ ТРЕХФАЗНЫХ СЧЕТЧИКОВ В ЭЛЕКТРОУСТАНОВКАХ НАПРЯЖЕНИЕМ ВЫШЕ 1000 В

В трехфазных трехпроводных сетях напряжением 6 — 10 кВ и выше для измерений электроэнергии применяют двухэлементные счетчики активной энергии типа СА3У-И670М, измерительные ТТ и трансформаторы напряжения (ТН), включенные по схеме, приведенной на рис. 22).

Измерение электроэнергии двухэлементным счетчиком СА3У-И670М рассмотрим на векторной диаграмме (рис. 23) линейных напряжений UAB = UCB = 100 В и токов IA = IC = 1 А с углом фазового сдвига φ = 30°.

Рис. 22. Схема включения двухэлементного счетчика активной энергии и трехэлементного счетчика реактивной энергии в трехпроводую цепь с двумя измерительными ТТ и ТН. Прямой порядок чередования фаз ABC обязателен

Рис. 23. Векторная диаграмма измерения электроэнергии двухэлементным счетчиком

Первым измерительным элементом счетчика измеряется активная мощность

P 1 = UABIAcos(30° + φ) = 100 · 1 · 0,5 = 50 Вт .

Вторым измерительным элементом счетчика измеряется активная мощность

P 2 = UCBICcos (30° — φ) = 100 · 1 · 1 = 100 Вт .

Активная мощность, измеряемая счетчиком, Р = Р1 + Р2 = 150 Вт.

При отсутствии тока IА или напряжения UA на первом измерительном элементе счетчика абсолютная погрешность измерений электроэнергии δ A составит 50 Вт или -33 %.

При отсутствии тока IC или напряжения UC на втором измерительном элементе счетчика погрешность измерений электроэнергии δС составит 100 Вт или -66 %.

При отсутствии напряжения фазы В на счетчике погрешность измерений электроэнергии δВ составит -50 %.

Если нагрузка на данном присоединении активная ( cosφ = 1), то погрешности измерений электроэнергии в названных выше случаях составляют: δ A = -50 %, δС = -50 %, δВ = -50 %.

В режиме холостого хода силового трансформатора (индуктивный характер нагрузки при cosφ = 0,17; φ = 80°) активная мощность, измеряемая первым элементом счетчика

P 1 = 100 · l · cos110° = -34 Вт ,

вторым элементом счетчика

Р2 = 100 · 1 · 0,64 = 64 Вт.

Активная мощность, измеряемая счетчиком, составит

Р = 64 — 34 = 30 Вт.

В этом режиме при отсутствии напряжения UC, вследствие перегорания предохранителя ТН или повреждения вторичных цепей, диск счетчика будет вращаться в. обратную сторону, искажая результаты измерений.

Согласно типовой инструкции по учету электроэнергии [ 7] рекомендуется применять трехэлементные счетчики. Схема включения этих счетчиков (рис. 24) обеспечивает их работу в классе точности в различных режимах работы сети. Подключение заземленной фазы b на средний элемент счетчика обеспечивает возможность установки прямого порядка чередования фаз напряжений и проверки схемы включения. Для проверки измерительного комплекса учета электрической энергии на месте установки измеряют следующие параметры:

линейные напряжения UAB, UBC, UAC; фазные напряжения UA, UB, UC; токи IA, IB, IC, I; углы фазового сдвига φ1, φ2, φ3 (рис. 25); потери напряжения в линии связи ТН — счетчик с оценкой соответствия требованиям ПУЭ; нагрузки вторичных цепей измерительных ТТ и ТН с оценкой их соответствия номинальным нагрузкам по ГОСТ 7746-89 и ГОСТ 1983-89.

Рис. 24. Схема включения трехэлементных счетчиков активной и реактивной энергии в четырехпроводную цепь с тремя ТТ и заземленной фазой b ТН. Прямой порядок чередования фаз ABC обязателен. (Цепи напряжения электронных счетчиков показаны условно)

Рис. 25. Векторная диаграмма и схема присоединения проводов для измерений электрической энергии трехэлементным счетчиком (отсчет углов фазового сдвига указан по показаниям ВАФ-85М от вектора линейного напряжения U АВ)

Активная мощность, измеряемая счетчиком,

Кроме того, проверяют соответствие коэффициентов трансформации измерительных ТТ и ТН, указанных на табличках, с их паспортными данными и, наконец, погрешности счетчика.

На основе анализа этих данных делается вывод о правильности схемы включения и предварительный вывод о достоверности измерений электроэнергии.

Положение векторов токов (см. рис. 25) IА, IВ, IC, относительно напряжений UA, UB, UC (угол фазового сдвига) определяется характером нагрузки в электрической сети потребителя. Он может иметь индуктивный, активный ( cosφ = 1) или емкостный характер. На время проверки установку компенсации реактивной мощности отключают.

На линиях связи положение векторов тока относительно своих напряжений определяется направлением перетоков (передачи) активной и реактивной мощности (рис. 26).

Чтобы избежать ошибок в схеме подключения счетчика, необходимо перед проверкой уточнить у диспетчера энергосистемы и по показаниям щитовых приборов на подстанции направление передачи активной и реактивной мощности на проверяемом присоединении.

Несмотря на это, при подключении счетчика (присоединением проводов к счетчику) можно допустить ошибку. Например возможно создание дополнительного фазового сдвига, отличающегося от действительного на 60°. На рис. 27 показана векторная диаграмма создания дополнительного фазового сдвига на 60° в индуктивность при активной нагрузке.

Читайте так же:
Будут ли штрафы для тех кто не установил счетчики
ВАФ-8530° (инд.)50° (инд.)70° (инд.)90° (инд.)110° (инд.)120° (инд.)130° (инд.)150° (инд.)170° (инд.)170° (емк.)150° (емк.)130° (емк.)110° (емк.)90° (емк.)70° (емк.)60° (емк.)50° (емк.)30° (емк.)10° (емк.)10° (инд.)30° (ннд.)
φ , град
cosφ0,940,760,50,17-0,17-0,5-0,76-0,94-1-0,94-0,76-0,5-0,170,170,50,760,94
Р0,940,760,50,17-0,17-0,5-0,76-0,94-1-0,94-0,76-0,5-0,170,170,50,760,94
прямоеобратноеобратноепрямое
Q0,340,640,860,980,980,860,640,34-0,34-0,64-0,86-0,98-1-0,98-0,86-0,64-0,34
прямоеобратное

Рис. 26. Положение вектора тока фазы А в зависимости от направлений передачи активной и реактивной мощности

Рис. 27. Векторная диаграмма создания дополнительного фазового сдвига при подключении счетчика и схема присоединения проводов

Ниже приведены данные о погрешности измерений электрической энергии в зависимости от изменения угла фазового сдвига ( cosφ) электроустановки:

Коэффициент мощности электроустановки cosφ , емк.0,980,940,860,760,640,5
Коэффициент мощности, с которым работает счетчик, cosφ сч , инд .0,50,640,760,860,940,98
Погрешность измерений электроэнергии счетчиком δ, %.-50-34-180,00+18+34+100

Включение трехэлементных электронных счетчиков в схему с двумя ТТ выполняется двумя способами:

1) установкой внешней перемычки на колодке зажимов счетчика между клеммой напряжения среднего элемента и общим выводом счетчика (рис. 28). Этой перемычкой первый и третий измерительные элементы счетчика переводятся на линейные напряжения UAB и UCB. Следует отметить, что не на всех типах трехэлементных счетчиков допускается установка такой перемычки;

2) включением токовой цепи среднего элемента счетчика на сумму токов фаз А и С с обратной полярностью (рис. 29).

Рис. 28. Схема включения счетчика активной энергии и трехэлементного счетчика реактивной энергии в трехпроводную цепь с двумя измерительными ТТ и ТН. Прямой порядок чередования фаз ABC обязателен

Рис. 29. Схема включения трехэлементных счетчиков активной и реактивной энергии в четырехпроводную цепь с двумя ТТ. Прямой порядок чередования фаз ABC обязателен. (Цепи напряжения электронных счетчиков показаны условно)

Что значит двухэлементный счетчик

С помощью статистической функции СЧЁТЕСЛИ можно подсчитать количество ячеек, отвечающих определенному условию (например, число клиентов в списке из определенного города).

Самая простая функция СЧЁТЕСЛИ означает следующее:

=СЧЁТЕСЛИ(где нужно искать;что нужно найти)

Браузер не поддерживает видео.

СЧЁТЕСЛИ(диапазон;критерий)

Имя аргумента

диапазон (обязательный)

Группа ячеек, для которых нужно выполнить подсчет. Диапазон может содержать числа, массивы, именованный диапазон или ссылки на числа. Пустые и текстовые значения игнорируются.

критерий (обязательный)

Число, выражение, ссылка на ячейку или текстовая строка, которая определяет, какие ячейки нужно подсчитать.

Например, критерий может быть выражен как 32, «>32», В4, «яблоки» или «32».

В функции СЧЁТЕСЛИ используется только один критерий. Чтобы провести подсчет по нескольким условиям, воспользуйтесь функцией СЧЁТЕСЛИМН.

Примеры

Чтобы использовать эти примеры в Excel, скопируйте данные из приведенной ниже таблицы и вставьте их на новый лист в ячейку A1.

Количество ячеек, содержащих текст «яблоки» в ячейках А2–А5. Результат — 2.

Количество ячеек, содержащих текст «персики» (значение ячейки A4) в ячейках А2–А5. Результат — 1.

Количество ячеек, содержащих текст «яблоки» (значение ячейки A2) и «апельсины» (значение ячейки A3) в ячейках А2–А5. Результат — 3. В этой формуле для указания нескольких критериев, по одному критерию на выражение, функция СЧЁТЕСЛИ используется дважды. Также можно использовать функцию СЧЁТЕСЛИМН.

Количество ячеек со значением больше 55 в ячейках В2–В5. Результат — 2.

Количество ячеек со значением, не равным 75, в ячейках В2–В5. Знак амперсанда (&) объединяет оператор сравнения «<>» (не равно) и значение в ячейке B4, в результате чего получается формула =СЧЁТЕСЛИ(B2:B5;»<>75″). Результат — 3.

Количество ячеек со значением, большим или равным 32 и меньшим или равным 85, в ячейках В2–В5. Результат — 3.

Количество ячеек, содержащих любой текст, в ячейках А2–А5. Подстановочный знак «*» обозначает любое количество любых символов. Результат — 4.

Количество ячеек, строка в которых содержит ровно 7 знаков и заканчивается буквами «ки», в диапазоне A2–A5. Подставочный знак «?» обозначает отдельный символ. Результат — 2.

Распространенные неполадки

Возможная причина

Для длинных строк возвращается неправильное значение.

Функция СЧЁТЕСЛИ возвращает неправильные результаты, если она используется для сопоставления строк длиннее 255 символов.

Читайте так же:
Срок проверки счетчиков бетар

Для работы с такими строками используйте функцию СЦЕПИТЬ или оператор сцепления &. Пример: =СЧЁТЕСЛИ(A2:A5;»длинная строка»&»еще одна длинная строка»).

Функция должна вернуть значение, но ничего не возвращает.

Аргумент критерий должен быть заключен в кавычки.

Формула СЧЁТЕ ЕСЛИ получает #VALUE! при ссылке на другой таблицу.

Эта ошибка возникает при вычислении ячеек, когда в формуле содержится функция, которая ссылается на ячейки или диапазон в закрытой книге. Для работы этой функции необходимо, чтобы другая книга была открыта.

Рекомендации

Помните о том, что функция СЧЁТЕСЛИ не учитывает регистр символов в текстовых строках.

Критерий не чувствителен к регистру. Например, строкам «яблоки» и «ЯБЛОКИ» будут соответствовать одни и те же ячейки.

Использование подстановочных знаков

В условиях отбора можно использовать поддикограммы: вопросии (?) и звездочки (*). Вопросительный знак соответствует любому отдельно взятому символу. Звездочка — любой последовательности символов. Если требуется найти именно вопросительный знак или звездочку, следует ввести значок тильды (

) перед искомым символом.

Например, =СЧЁТЕСЛИ(A2:A5;»яблок?») возвращает все вхождения слова «яблок» с любой буквой в конце.

Убедитесь, что данные не содержат ошибочных символов.

При подсчете текстовых значений убедитесь в том, что данные не содержат начальных или конечных пробелов, недопустимых прямых и изогнутых кавычек или непечатаемых символов. В этих случаях функция СЧЁТЕСЛИ может вернуть непредвиденное значение.

Для удобства используйте именованные диапазоны.

СЧЁТЕ ЕСЛИ поддерживает именные диапазоны в формуле (например, =СЧЁТЕЕСЛИ(фрукты ,»>=32″)-СЧЁТЕЕСЛИ(фрукты ,»>85″). Именованный диапазон может располагаться на текущем листе, другом листе этой же книги или листе другой книги. Чтобы одна книга могла ссылаться на другую, они обе должны быть открыты.

Примечание: С помощью функции СЧЁТЕСЛИ нельзя подсчитать количество ячеек с определенным фоном или цветом шрифта. Однако Excel поддерживает пользовательские функции, в которых используются операции VBA (Visual Basic для приложений) над ячейками, выполняемые в зависимости от фона или цвета шрифта. Вот пример подсчета количества ячеек определенного цвета с использованием VBA.

Дополнительные сведения

Вы всегда можете задать вопрос специалисту Excel Tech Community или попросить помощи в сообществе Answers community.

Обзор и устройство современных счётчиков электроэнергии

За последнее время на смену индукционным счётчикам электроэнергии пришли электронные. В данных счётчиках счётный механизм приводится во вращение не с помощью катушек напряжения и тока, а с помощью специализированной электроники. Кроме того, средством счёта и отображения показаний может являться микроконтроллер и цифровой дисплей соответственно. Всё это позволило сократить габаритные размеры приборов, а также, снизить их стоимость.

В состав практически любого электронного счётчика входит одна или несколько специализированных вычислительных микросхем, выполняющие основные функции по преобразованию и измерению. На вход такой микросхемы поступает информация о напряжении и силе тока с соответствующих датчиков в аналоговом виде. Внутри микросхемы данная информация оцифровывается и преобразуется определённым образом. В результате, на выходе микросхемы формируются импульсные сигналы, частота которых пропорциональна текущей потребляемой мощности нагрузки, подключенной к счётчику. Импульсы поступают на счётный механизм, который представляет собой электромагнит, согласованный с зубчатыми передачами на колёсики с цифрами. В случае с более дорогостоящими счётчиками с цифровым дисплеем применяется дополнительный микроконтроллер. Он подключается к вышесказанной микросхеме и к цифровому дисплею по определённому интерфейсу, ведёт накопление результата измерения электроэнергии в энергонезависимую память, а также, обеспечивает дополнительный функционал прибора.

Рассмотрим несколько подобных микросхем и моделей счётчиков, которые мне попадались под руку.

Ниже на рисунке в разобранном виде изображён один из наиболее дешёвых и популярных однофазных счётчиков «НЕВА 103». Как видно из рисунка, устройство счётчика довольно простое. Основная плата состоит из специализированной микросхемы, её обвески и узла стабилизатора питания на основе балластового конденсатора. На дополнительной плате размещён светодиод, индицирующий потребляемую нагрузку. В данном случае – 3200 импульсов на 1 кВт*ч. Также есть возможность снимать импульсы с зелёного клеммника, расположенного вверху счётчика. Счётный механизм состоит из семи колёсиков с цифрами, редуктора и электромагнита. На нём отображается посчитанная электроэнергия с точностью до десятых кВт*ч. Как видно из рисунка, редуктор имеет передаточное отношение 200:1. По моим замечаниям, это означает «200 импульсов на 1 кВт*ч». То есть, 200 импульсов, поданных на электромагнит, поспособствуют прокрутке последнего красного колёсика на 1 полный оборот. Это соотношение кратно соотношению для светодиодного индикатора, что весьма не случайно. Редуктор с электромагнитом размещён в металлической коробке под двумя экранами с целью защиты от вмешательства внешним магнитным полем.

Читайте так же:
Где узнать про счетчики

В данной модели счётчика применяется микросхема ADE7754. Рассмотрим её структуру.

На пины 5 и 6 поступает аналоговый сигнал с токового шунта, который расположен на первой и второй клеммах счётчика (на фотографии в этом месте видно повреждение). На пины 8 и 7 поступает аналоговый сигнал, пропорциональный напряжению в сети. Через пины 16 и 15 есть возможность устанавливать усиление внутреннего операционного усилителя, отвечающий за ток. Оба сигнала с помощью узлов АЦП преобразуются в цифровой вид и, проходя определённую коррекцию и фильтрацию, поступают на умножитель. Умножитель перемножает эти два сигнала, в результате чего, согласно законам физики, на его выходе получается информация о текущей потребляемой мощности. Данный сигнал поступает на специализированный преобразователь, который формирует готовые импульсы на счётное устройство (пины 23 и 24) и на контрольный светодиод и счётный выход (пин 22). Через пины 12, 13 и 14 конфигурируются частотные множители и режимы вышеперечисленных импульсов.

Стандартная схема обвески практически представляет собой схему рассматриваемого счётчика.

Общий минусовой провод соединён с нулём 220В. Фаза поступает на пин 8 через делитель на резисторах, служащий для снижения уровня измеряемого напряжения. Сигнал с шунта поступает на соответствующие входы микросхемы также через резисторы. В данной схеме, предназначенной для теста, конфигурационные пины 12-14 подключены к логической единице. В зависимости от модели счётчика, они могут иметь разную конфигурацию. В данном кратком обзоре эта информация не столь важна. Светодиодный индикатор подключен к соответствующему пину последовательно вместе с оптической развязкой, на другой стороне которой подключается клеммник для снятия счётной информации (К7 и К8).

Из этого же семейства микросхем существуют похожие аналоги для трёхфазных измерений. Вероятнее всего, они встраиваются в дешёвые трёхфазные счётчики. В качестве примера на рисунке ниже представлена структура одной из таких микросхем, а именно ADE7752.

Вместо двух узлов АЦП, здесь применено их 6: по 2 на каждую фазу. Минусовые входы ОУ напряжения объединены вместе и выводятся на пин 13 (ноль). Каждая из трёх фаз подключается к своему плюсовому входу ОУ (пины 14, 15, 16). Сигналы с токовых шунтов по каждой фазе подключаются по аналогии с предыдущим примером. По каждой из трёх фаз с помощью трёх умножителей выделяется сигнал, характеризующий текущую мощность. Эти сигналы, кроме фильтров, проходят через дополнительные узлы, которые активируются через пин 17 и служат для включения операции математического модуля. Затем эти три сигнала суммируются, получая, таким образом, суммарную потребляемую мощность по всем фазам. В зависимости от двоичной конфигурации пина 17, сумматор суммирует либо абсолютные значения трёх сигналов, либо их модули. Это необходимо для тех или иных тонкостей измерения электроэнергии, подробности которых здесь не рассматриваются. Данный сигнал поступает на преобразователь, аналогичный предыдущему примеру с однофазным измерителем. Его интерфейс также практически аналогичен.

Стоит отметить, что вышеописанные микросхемы служат для измерения активной энергии. Более дорогие счётчики способны измерять как активную, так и реактивную энергию. Рассмотрим, например, микросхему ADE7754. Как видно из рисунка ниже, её структура намного сложнее структуры микросхем из предыдущих примеров.

Микросхема измеряет активную и реактивную трёхфазную электроэнергию, имеет SPI интерфейс для подключения микроконтроллера и выход CF (пин 1) для внешней регистрации активной электроэнергии. Вся остальная информация с микросхемы считывается микроконтроллером через интерфейс. Через него же осуществляется конфигурация микросхемы, в частности, установка многочисленных констант, отражённых на структурной схеме. Как следствие, данная микросхема, в отличие от предыдущих двух примеров, не является автономной, и для построения счётчика на базе этой микросхемы требуется микроконтроллер. Можно зрительно в структурной схеме пронаблюдать узлы, отвечающие по отдельности за измерение активной и реактивной энергии. Здесь всё гораздо сложнее, чем в предыдущих двух примерах.

В качестве примера рассмотрим ещё один интересный прибор: трёхфазный счётчик «Энергомера ЦЭ6803В Р32». Как видно из фотографии ниже, данный счётчик ещё не эксплуатировался. Он мне достался в неопломбированном виде с небольшими механическими повреждениями снаружи. При всё при этом он находился полностью в рабочем состоянии.

Как можно заметить, глядя на основную плату, прибор состоит из трёх одинаковых узлов (справа), цепей питания и микроконтроллера. С нижней стороны основной платы расположены три одинаковых модуля на отдельных платах по одному на каждый узел. Данные модули представляют собой микросхемы AD71056 с минимальной необходимой обвеской. Эта микросхема является однофазным измерителем электроэнергии.

Модули запаяны вертикально на основную плату. Витыми проводами к данным модулям подключаются токовые шунты.

Читайте так же:
Производитель счетчика меркурий 231

За пару часов удалось срисовать электрическую схему прибора. Рассмотрим её более детально.

Справа на общей схеме изображена схема однофазного модуля, о котором говорилось выше. Микросхема D1 этого модуля AD71056 по назначению похожа на микросхему ADE7755, которая рассматривалась ранее. На четвёртый контакт модуля поступает питание 5В, на третий – сигнал напряжения. Со второго контакта снимается информация в виде импульсов о потребляемой мощности через выход CF микросхемы D1. Сигнал с токовых шунтов поступает через контакты X1 и X2. Конфигурационные входы микросхемы SCF, S1 и S0 в данном случае расположены на пинах 8-10 и сконфигурированы в «0,1,1».

Каждый из трёх таких модулей обслуживает соответственно каждую фазу. Сигнал для измерения напряжения поступает на модуль через цепочку из четырёх резисторов и берётся с нулевой клеммы («N»). При этом стоит обратить внимание, что общим проводом для каждого модуля является соответствующая ему фаза. А вот, общий провод всей схемы соединён с нулевой клеммой. Данное хитрое решение по обеспечению питанием каждого узла схемы расписано ниже.

Каждая из трёх фаз поступает на стабилитроны VD4, VD5 и VD6 соответственно, затем на балластовые RC цепи R1C1, R2C2 и R3C3, затем – на стабилитроны VD1, VD2 и VD3, которые соединены своими анодами с нулём. С первых трёх стабилитронов снимается напряжение питания для каждого модуля U3, U2 и U1 соответственно, выпрямляется диодами VD10, VD11 и VD12. Микросхемы-регуляторы D1-D3 служат для получения напряжения питания 5В. Со стабилитронов VD1-VD3 снимается напряжение питания общей схемы, выпрямляется диодами VD7-VD9, собирается в одну точку и поступает на регулятор D4, откуда снимается 5В.

Общую схему составляет микроконтроллер (МК) D5 PIC16F720. Очевидно, он служит для сбора и обработки информации о текущей потребляемой мощности, поступающей с каждого модуля в виде импульсов. Эти сигналы поступают с модулей U3, U2 и U1 на пины МК RA2, RA4 и RA5 через оптические развязки V1, V2 и V3 соответственно. В результате на пинах RC1 и RC2 МК формирует импульсы для механического счётного устройства M1. Оно аналогично устройству, рассматриваемому ранее, и также имеет соотношение 200:1. Сопротивление катушки высокое и составляет порядка 500 Ом, что позволяет подключать её непосредственно к МК без дополнительных транзисторных цепей. На пине RC0 МК формирует импульсы для светодиодного индикатора HL2 и для внешнего импульсного выхода на разъёме XT1. Последний реализуется через оптическую развязку V4 и транзистор VT1. В данной модели счётчика соотношение составляет 400 импульсов на 1 кВт*ч. На практике при испытании данного счётчика (после небольшого ремонта) было замечено, что электромагнитная катушка счётного механизма срабатывает синхронно со вспышкой светодиода HL2, но через раз (в два раза реже). Это подтверждает соответствие соотношений 400:1 для индикатора и 200:1 для счётного механизма, о чём говорилось ранее.

Слева на плате расположено место для 10-пинового разъёма XS1, который служит для перепрошивки, а также, для UART интерфейса МК.

Таким образом, трёхфазный счётчик «Энергомера ЦЭ6803В Р32» состоит из трёх однофазных измерительных микросхем и микроконтроллера, обрабатывающий информацию с них.

В заключение стоит отметить, что существует ряд моделей счётчиков куда более сложней по своей функциональности. К примеру, счётчики с удалённым контролем показаний по электролинии, или даже через модуль мобильной связи. В данной статье я рассмотрел только простейшие модели и основные принципы построения их электрических схем. Заранее приношу извинения за возможно неправильную терминологию в тексте, ибо я старался излагать простым языком.

Как снять показания электросчетчика Ленэлектро. Однотарифные и многотарифные модели

Согласно российскому законодательству, любая жилая и коммерческая недвижимость должна быть оборудована счетчиками электроэнергии. Энергопоставляющая компания с помощью таких приборов учета контролирует количество потребляемой электроэнергии, а клиент контролирует и учитывает свои расходы. Начисление оплаты производится согласно снятых показаний. Приборы учета компании «Россети Ленэнерго» — универсальные электросчетчики измерения, которые позволяют снимать показания расхода электроэнергии дистанционно по многотарифному плану. Данные приборы полностью отвечают требованиям, предъявляемым к системам учета и могут быть установлены на бесплатной основе согласно инвестиционной программе.

Как снять показания электросчетчика Однотарифные и многотарифные модели

Как снять показания с однотарифного счетчика

К однотарифным счетчикам относятся индукционные приборы учета. Снять данные с такого прибора можно при помощи простых расчетов.

Чтобы снять показания с однотарифного счетчика выполните следующие действия:

  1. Внесите показания в квитанцию, которые отражены на табло электросчетчика – первые пять цифр без нулей в красной рамочке;
  2. Из снятых показаний необходимо вычесть показания предыдущего периода. Этот показатель и является количеством израсходованных кВт за месяц;
  3. Умножьте данный показатель месяца на стоимость 1 кВт электроэнергии, и вы получите сумму, необходимую к оплате.

Точное снятие и передача данных гарантируют правильное начисление платы за услуги электроэнергии и отсутствие переплаты и задолженности по оказанной услуге.

Как снять показания электросчетчика

Как снять показания с многотарифного электросчетчика Ленэнерго

В отличие от индуктивных устройств учета, электронные многотарифные счетчики имеют электронный циферблат. Здесь отражены не только киловатты, но и время, дата, тарифы зон. Счетчики бывают однотарифные — когда учитывается расход электроэнергии по одному показателю, двухтарифные – расчет по дневному и ночному тарифу и многотарифные – учет по тарифу день, ночь и часы пик.

Читайте так же:
Счетчик для сайта с обратным отсчетом времени

Чтобы снять показания с многотарифного электросчетчика Ленэнерго выполните следующие действия:

  1. Спишите показания по каждой временной зоне. Чтобы это сделать нажмите на экране счетчика кнопку «Ввод»;
  2. Поочередно будут высвечиваться показатели Т1, Т2 и Т3 – запишите в платежный документ данные всех показаний до запятой;
  3. После завершения процесса, вы увидите на табло сумму всех трех режимов;
  4. Чтобы рассчитать оплату по двухтарифному прибору учета, вычтите показатели Т1 и Т2 из соответствующих показателей предыдущего месяца и умножьте полученные суммы на ставки по тарифам. Сложите эти два показателя;
  5. Выполните те же действия с тремя показателями, если у вас установлен многотарифный прибор учета.

Воспользуйтесь рекомендациями, описанными в данной статье, чтобы снимать показания с электросчетчика Ленэнерго – это довольно просто, не требует много времени и гарантирует правильность начисления оплаты.

Трехтарифный счетчик т1 т2 т3

Многим собственникам квартир знакома тарификация электропотребления, так как активно используются двухтарифные приборы учёта. Они позволяют значительно экономить на квартплате. Но в последние годы на рынке появились счётчики электроэнергии Т1, Т2, Т3.

В обзоре подробно разберём различия между ставками и расскажем, как рассчитывать потреблённую электроэнергию по многотарифным приборам учёта.

Счетчик электроэнергии для дома

Что означает Т1, Т2, Т3 в электросчётчике?

В энергопотреблении сутки разделены на тарифные зоны, каждая из которых имеет своё обозначение и временной интервал. Если Вы используете 3-х тарифные счётчики электроэнергии, то время тарифов по ним рассчитывается по-иному, чем у двухтарифных. Разберём более подробно каждый из них.

Обозначение Т1

Первая тарификация — это утреннее время суток часа пика, около 7:00 до 10:00 часов утра, и пиковое вечернее время с 17:00 до 21:00. В данный период тарификация считается дорогой по сравнению с Т3 и может возрастать в 0,7 раз.

Обозначение Т2

Это самая экономичная ставка, которая называется “Ночной тариф”. Если показатели Т1 и Т3 разделены на два периода, то ночное время суток — один период с 23:00 до 7:00 утра.

Из-за пониженной ставки многие люди в будни предпочитают давать большую нагрузку на энергосеть именно в период действия тарифа Т2.

Обозначение Т3

Полупиковый тариф считается в следующем временном интервале:

  • с 10:00 до 17:00;
  • с 21:00 до 23:00.

Данная ставка часто приравнивается к тарифу Т1, то есть является самой дорогой. Поэтому большая часть потребителей старается исключить включение мощных бытовых приборов, чтобы снизить плату за коммунальные платежи.

Какую формулу используют для снятия показаний по трёхтарифному счётчику?

Чтобы рассчитать показания счётчиков электроэнергии по ставкам Т1, Т2, и Т3, нужно сперва узнать тарифы, применяемые в Вашем регионе. Именно они нужны для правильного расчёта платежа. Далее алгоритм действий будет следующим:

  1. С трёхтарифного счётчика списать все показания. Они отображаются попеременно с интервалом примерно в 30 секунд.
  2. Записать данные предыдущего месяца. Их можно взять из квитанции об оплате.
  3. Получить разницу из каждого тарифа. То есть из текущего месяца вычесть предыдущий по видам ставки: Т1 (настоящий месяц) – Т1 (прошлый месяц) и так далее.
  4. Полученные цифры перемножить на действующие тарифы согласно ставкам. Например, полученную разницу по тарифу Т1 умножить на тариф Т1 из тарификационной сетки энергосбытовой компании. Это действие произвести с каждым показателем.
  5. Чтобы получить итоговую сумму к оплате, необходимо сложить все три значения.
  6. В случае применения льгот нужно вычитать их из общей суммы.

Если у Вас установлен трёхтарифный прибор учёта, мы просим Вас поделиться своим опытом и рассказать о полученных выгодах, а также о нюансах экономии. Ваши комментарии могут помочь другим собственникам жилья в выборе электросчётчиков.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector