Berezka7km.ru

Березка 7км
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Измерение тока и напряжения

ИЗМЕРЕНИЕ ТОКА И НАПРЯЖЕНИЯ

Схемы включения амперметра и вольтметра

Измерение тока и напряженияПоказание амперметра определяется током в его измерительном механизме. Поэтому для измерения тока в каком-либо участке электрической цепи, приемнике или гене раторе амперметр надо включить так, чтобы измеряемый ток проходил через него. Следовательно, амперметр включается последовательно с приемником, генератором или участком цепи (рис. 7-7).

Рис. 7-7. Включение амперметров и вольтметров.

Включение амперметра не должно изменить режим работы цепи» следовательно, сопротивление его должно быть малым по сравнению с сопротивлением приемника или участка цепи. При малом сопротивлении амперметра (ra) и номинальном токе его (Ia, н) мала и номинальная мощность потерь в нем

Е сли измеряемый ток больше номинального тока изме рительного механизма (амперметра), то для расширения предела измерения тока в цепях постоянного тока применяют шунты, рассмотренные ниже, а в цепях переменного тока — трансфо рматоры тока .

Показание вольтметра определяется напряжением на его зажимах. Поэтому для измерения напряжения на зажимах приемника или генератора необходимо его зажимы соединить с зажимами вольтметра, т. е. присоединить вольтметр п араллельно потребителю или генератору (рис. 7-7).

Сопротивление вольтметра должно быть большим по сравнению с сопротивлением приемника энергии (генератора), параллельно которому он включается с тем, чтобы его включение не влияло на измеряемое напряжение (на режим работы цепи). При большом сопротивлении вольтметра (ra) номинальный ток ero( Iв, н) мал, мала и номинальная мощность потерь в нем (Р в, н), так как

Напряжение на зажимах измерительного механизма

Так как сопротивление медной обмотки измерительного механизма rи изменяется на 4% при изменении температуры на 10° С, то напряжение Uи не пропорционально току Iи, а следовательно, и углу поворота подвижной части. Таким образом, точное измерение напряжения невозможно.

Включив последовательно с измерительным механизмом большое добавочное сопротивление (rД > rи ) из манганина, температурный коэффициент которого близок к нулю, получим сопротивление вольтметра r в= rи+ rД практически независимым от температуры.

Таким образом, угол поворота подвижной части вольтметра будет пропорционален не только току, но и напряжению на зажимах

Добавочное сопротивление, кроме того, применяется для увеличения номинального напряжения вольтметра, так как номинальное напряжение измерительного механизма обычно мало.

Для расширения предела измерения напряжения в цепях переменного тока высокого напряжения наряду с добавочным сопротивлением применяют измерительные трансформаторы напряжения.

Из изложенного следует, что амперметр и вольтметр могут иметь измерительные механизмы одинакового устройства, отличающиеся только своими параметрами. Но амперметр и вольтметр по разному включаются в измеряемую цепь и имеют разные внутренние измерительные схемы.

Магнитоэлектрические амперметры и вольтметры

Выше указывалось, что наибольший номинальный ток, на который изготовляются магнитоэлектрические измерительные механизмы, не превышает 100 ма. Таким образом, магнитоэлектрические приборы для измерения малых токов (гальванометры, микроамперметры, миллиамперметры) представляют собой измерительный механизм, катушка которого присоединена к зажимам прибора, расположенным на его корпусе, а на шкалах непосредственно наносятся значения измеряемого тока.

Измерительный механизм с шунтом

Рис. 7 -8. Измерительный механизм с шунтом.

Магнитоэлектрический амперметр представляет собой измерительный механизм той же системы с ш унтом для расширения предела измерения тока. Шунт присоединяется параллельно измерительному механизму (рис. 7-8).

Измеряемый ток в узле а делится на две части: ток шунта Iɯ и ток измерительного механизма Iи. Падение напряжения на разветвлении (рис. 7-8)

Амперметр с многопредельным шунтом

Рис. 7-9. Амперметр с многопредельным шунтом.

При постоянных значениях сопротивления шунта rш и сопротивлении измерителя r и измеряемым током I и током измерительного механизма Iи будет постоянное отношение р.. Следовательно, по углу поворота подвижной части измерительного механизма можно определять измеряемый ток. Шунты должны иметь достаточное сечение, исключающее возможность их нагревания и связанных с этим погрешностей, Шунты на токи до 25—50 а обычно помещаются в кожухе прибора, а на большие токи — вне прибора отдельно от него.

Технические амперметры имеют однопредельные шунты, а образцовые и лабораторные—многопредельные (рис. 7-9).

Рис. 7-10. Измерительный механизм с добавочным сопротивлениемИзмерительный механизм с добавочным сопротивлением

Различные пределы измерения получаются изменением сопротивления шунта при перестановке штепселя из одного гнездами другое. Магнитоэлектрический вольт метр представляет собой измерительный механизм той же системы с добавочным сопротивле нием для расширения предела измерения напряжения (рис. 7-10). На шкале вольтметра наносятся деления, дающие значения напряжения на его зажимах:

которое больше напряжений на измерительном механизме

Технические вольтметры имеют однопредельное, а образцовые и лабораторные — многопредельные добавочные сопротивления (рис. 7-11). Различные номинальные напря жения получаются использованием различных добавочных сопротивлении, что достигается переносом одного из проводов с одного зажима вольтметра на другой, или переключением переключателя или штепселя.

Вольтметр с многопредельным добавочным сопротивлением

Рис 7-11. Вольтметр с многопредельным добавочным сопротивлением.

Магнитоэлектрические амперметры и вольтметры изготовляются как образцовые и лабораторные (класс точности 0,1—0,5), так и технические (класс 1—2,5).

Они обладают высокой чувствительностью, малым влиянием внешних магнитных полей, незначительным влиянием температуры, малой мощностью потерь, чувствительностью к перегрузкам.

Выпрямительные амперметры и вольтметры

Выпрямительные амперметры представляют собой сочетание магнитоэлектрического измерительного механизма с полупроводниковым выпрямителем (рис. 7-12).

В течение одного пол у пер иода ток идет по пути абгв, в течение второго пол у периода по пути вбга. Следовательно, через измерительный механизм в течение каждого полупериода переменного тока проходит полуволна тока одного и того же направления. Средний вращающий момент и угол поворота подвижной части зависят от среднего тока, а этот последний при синусоидальном токе пропорционален действующему значению тока, значения которого и наносятся на шкале амперметра.

Читайте так же:
Тепловое поражение электрическим током ведет

Расширение предела измерения тока достигается применением шунтов.

Рис. 7-12. Схема выпрямительного амперметра и кривая тока в измерительном механизме.

Выпрямительные вольтметры представляют собой сочетание магнитоэлектрического измерительного механизма с полупроводниковым выпрямителем и добавочным сопротивлением (рис. 7-13).

Угол поворота подвижной части, как и у амперметра, при синусоидальной измеряемой величине пропорционален действующему значению тока, а при постоянном сопротивлении вольтметра — действующему значению напряжения, которые и наносятся на шкале вольтметра.

Выпрямительные амперметры и вольтметры имеют класс точности 1,5—2,5. Они применяются главным образом в цепях переменного тока повышенной частоты до 10 кгц.

Схема выпрямительного вольтметра

Рис 7.13 Схема выпрямительного вольтметра

Термоэлектрические амперметры и вольтметры

Термоэлектрический амперметр представляет собой сочетание магнитоэлектрического измерительного механизма с термопреобразователем (рис. 7-14), а вольтметр, кроме того, имеет добавочное сопротивление.

Два сваренных конца двух проводов из разных металлов называются термопарой. Несваренные концы термопары называются с в о б о д н ы м и, сваренные — рабочими .

При нагреве рабочих концов термопары на свободных концах появится разность потенциалов называемая термоэлектродвижущей силой — термо-э д. с. Термо-э. д. с. зависит от металлов, образующих термопару, и разности температур между рабочими и свободными концами термопары, а при постоянной температуре свободных концов — от температуры рабочего конца термопары. Приварив к рабочему концу термопары проводник — нагреватель, получим термопреобразователь.

Термоэлектрический амперметр

Рис. 7-14. Термоэлектрический амперметр.

При прохождении переменного тока по нагревателю он нагревается, нагревает рабочий конец термопары и на свободных концах ее появится термо-э. д. с. Если к этим концам присоединен измерительный механизм, то в нем появится ток и подвижная часть повернется на угол зависящий как от термо-э. д. с., так и от измеряемого переменного тока, проходящего по нагревателю. На шкале амперметра наносятся действующие значения тока.

Вольтметр отличается от амперметра добавочным сопротивлением, соединенным последовательно с нагревателем термопреобразователя. В этом случае угол поворота подвижной части зависит не только от тока, но и от напряжения на зажимах вольтметра. На шкале наносится действующее значение этого напряжения.

Точность термоэлектрических приборов соответствует классам 1 ,5—2,5.

Термоэлектрические приборы применяются в цепях переменного тока повышенной и высокой частоты (до 10— 50 Мгц).

Электромагнитные амперметры и вольтметры

Показание электромагнитного измерительного механизма зависит от тока в его катушке, значения которого и наносятся на шкале амперметра. Катушка электромагнитного амперметра неподвижна вес ее не влияет на погрешность от трения, поэтому она может быть изготовлена из провода любого сечения и, следовательно, на любой номинальный ток. Щитовые амперметры изготовляются нашими заводами на номинальный ток до 300 а.

Схема электродинамического миллиамперметра

Рис. 7-15. Схема электродинамического миллиамперметра.

Электромагнитный вольтметр состоит из одноименного измерительного механизма на номинальный ток 20—30 ма и последовательно соединенного с ним добавочного сопротивления из манганина (рис. 7-10). Добавочное сопротивление — активное и несоизмеримо больше реактивного сопротивления катушки измерительного механизма, поэтому общее сопротивление вольтметра практически активное и мало зависит от рода тока и частоты. При постоянном сопротивлении вольтметра угол поворота подвижной части зависит не только от тока в катушке, но и пропорционального ему напряжения на зажимах вольтметра, значения которого и наносятся на шкале прибора.

Электромагнитные амперметры и вольтметры широко применяются в установках переменного тока технической частоты как щитовые, приборы классов точности 1,5—2,5. Наша промышленность наряду с техническими приборами выпускает также переносные амперметры и вольтметры для постоянного и переменного тока класса точности 0,5,

Электродинамические и ферродинамические амперметры и вольтметры

Электродинамический амперметр представляет собой измерительный механизм того же названия, катушки которого соединены последовательно или параллельно в зависимости от его номинального тока, а на шкале нанесены деления, соответствующие значениям тока, проходящего по амперметру.

Подвижная катушка для уменьшения погрешности от трения делается легкой из провода малого сечения на номинальный ток не выше 100 ма. Неподвижную катушку изготовляют из провода разного сечения в зависимости от номинального тока, который может быть 5 а и выше. Поэтому в миллиамперметрах катушки соединяются последовательно (рис. 7-15), а в амперметрах — параллельно (рис. 7-16).

Схема электродинамического амперметра

Рис. 7-16. Схема электродинамического амперметра.

При последовательном соединении катушек токи в них одинаковы и совпадают по фазе, следовательно, угол по ворота подвижной части прибора пропорционален квадрату тока

При параллельном соединении катушек амперметра и постоянных сопротивлениях ветвей каждый из токов катушек I1 и I2 пропорционален измеряемому току I Если, кроме того, активные и реактивные сопротивления ветвей подобраны так, что токи I1 и I2 совпадают по фазам (Ψ — 0), то как и в предыдущем случае угол поворота подвижной части амперметра будет пропорционален квадрату измеряемого тока, т. е.

Читайте так же:
Тепловизионный контроль трансформаторов тока

Электродинамические вольтметры состоят из измерительного механизма того же названия, катушки которого изготовлены из провода малого сечения на номинальный ток 20—50 ма и соединены последовательно между собой и с добавочным сопротивлением (рис. 7-17).

Схема электродинамического вольтметра

Рис. 7-17. Схема электродинамического вольтметра.

Добавочное сопротивление предназначено для расширения предела измерения напряжения и уменьшения влияния температуры, рода тока и частоты на показание вольтметра.

Электродинамические амперметры и вольтметры изготовляются в качестве образцовых и лабораторных приборов (класс точности 0,1—0,5) для цепей переменного тока стандартной и повышенной частоты до 2 000 гц. Электродинамические приборы обладают высокой точностью и пригодны для постоянного и переменного тока.

Они чувствительны к перегрузкам и к влиянию внешних магнитных полей.

Ферродинамические амперметры и вольтметры имеют те же внутренние измерительные схемы, что и электродинамические приборы. Они применяются главным образом как самопишущие приборы для цепей переменного тока. Ферродинамические приборы обладают невысокой точностью (класс точности 1,5—2,5), большим вращающим моментом, прочной и надежной конструкцией. Они практически не чувствительны к влиянию внешних магнитных полей.

Амперметр

Амперметр — это измерительный прибор, позволяющий определить силу тока и напряжение в электрической цепи («ампер» — единица измерения, названная так в честь французского физика/математика/естествоиспытателя Андре-Мари Ампера, «метрио» — измерять).

Прибор широко применяется в промышленности, народном хозяйстве, энергетике, радиоэлектронике; может использоваться в научных целях, а также в бытовых (например, для выявления неисправностей электрооборудования в автомобиле, замера силы тока аккумулятора и др.).

Какие бывают разновидности, что измеряют

  • аналоговые (магнитоэлектрические, электромагнитные, электродинамические, ферродинамические);
  • цифровые.

Аналоговые

Принцип работы магнитоэлектрических амперметров строится на взаимосвязи магнитного поля и находящейся в его корпусе подвижной катушки. Такие приборы отличаются низким электропотреблением, высокой чувствительностью и точностью измерений.

К недостаткам магнитоэлектрических амперметров можно отнести некоторые конструктивные особенности. Магнитоэлектрический амперметр измеряет силу лишь постоянного тока.

Устройство электромагнитных амперметров проще: они не имеют движущейся катушки; внутри корпуса имеется особое приспособление и один, либо несколько сердечников, установленных на оси. Эти приборы обладают меньшей чувствительностью (в сравнении с магнитоэлектрическими), следовательно, точность их измерений ниже. Однако ими возможно измерение силы как постоянного, так и переменного тока, что характеризует их, как универсальные.

Работа электродинамических амперметров основывается на взаимодействии электрических полей токов, проходящих по электромагнитным катушкам. Прибор состоит из подвижной и неподвижной катушек и является универсальным. Недостаток: очень большая чувствительность (реагируют на самые незначительные магнитные колебания; возникают помехи), поэтому электродинамические амперметры применяются только в защищенном экраном месте.

Конструкция ферродинамического амперметра состоит из замкнутого ферримагнитного провода, сердечника и неподвижной катушки. Магнитные поля возле прибора не оказывают сколь-нибудь существенного влияния на точность измерений, поэтому его показания предельно точны и, в целом, работа прибора — надежна и эффективна.

Цифровые

Цифровой амперметр является более сложной конструкцией, включающей аналогово-цифровой преобразователь, где осуществляется конверсия силы тока в цифровые показатели, которые отражаются на ЖК-дисплее.

Плюсы: небольшие размеры, удобство использования, точность измерений. Такому типу амперметров не страшны вибрации или незначительные механические удары и на сегодняшний день он все шире используется в промышленности и в быту.

Кроме того, возможно деление амперметров по виду тока:

  • для переменного;
  • для постоянного.

Включение амперметра в электрическую цепь

Перед тем, как включить амперметр, важно учесть следующие моменты:

  • замеряемый в цепи электрический ток не должен превышать максимально допустимого для данного прибора;
  • при включении в цепь необходимо соблюдать полярность.

При проведении измерений следует обеспечить абсолютное отсутствие вибраций в месте установки амперметра.

Действия при подключении прибора:

  1. Определяются входящий и выходящий контакты, их полярность; положительный контакт окрашен в красный цвет, отрицательный — в черный (на некоторых моделях возможен еще один контакт, вероятнее всего, зеленого цвета — заземление).
  2. В зависимости от того, в цепи с каким током (постоянным или переменным) будут проводиться замеры, переключатель прибора ставится в положение «AC» или «DC»: первые символы обозначают цепь с переменным током, вторые — с постоянным.
  3. В любом месте, между источником питания и устройством-энергопотребителем, производится разрыв одного провода электрической цепи.
  4. Амперметр последовательно включается в цепь.

Как только движение стрелки или смена цифр на дисплее прекратятся, снимаются показания.

Погрешность

Выяснить значение силы тока с предельной ясностью невозможно, поэтому принято учитывать показания приборов с погрешностью. Погрешность (отклонение выходного сигнала от истинного значения входного) выступает одной из основных характеристик любых средств измерений.

Различаются несколько видов погрешностей:

  1. Абсолютная — разность между показанием прибора и истинным (действительным) значением измеряемой величины (абсолютная погрешность с обратным знаком называется поправкой).
  2. Относительная — является соотношением абсолютной погрешности к истинному (действительному) значению измеряемой величины.
  3. Приведенная — отношение абсолютной погрешности к нормирующему значению, выраженное в % (нормирующее — условно принятое значение, которое может быть равным конечному значению диапазона измерений (предельному значению шкалы устройства).

Погрешность характеризуется классом точности, а именно — значением приведенной погрешности в %.

Класс точности указывается числом предпочтительного рода. К примеру, 0,05. Применяется для приборов, у которых предел допускаемой приведенной погрешности постоянен на всех отметках рабочей части шкалы. Подобным образом обозначаются классы точности и амперметров.

Читайте так же:
Тепловое действие электрического тока закон джоуля ленца тест

Пределы измерения

Амперметр имеет несколько диапазонов измерения тока. Выбор диапазона осуществляется при помощи переключателя. Шкала приборов градуируется в следующих значениях: мкА (микроампер), мА (миллиампер), А (ампер), кА (килоампер). В соответствии с требуемой точностью и пределами измерения выбирается подходящий. Изменение (увеличение) пределов измеряемой величины тока возможно посредством включения в электрическую цепь специальных устройств:

Амперметр. Измерение силы тока в цепи. 8-й класс

Назад Вперёд

  • Образовательная: повторить понятия: электрический ток; правила определения цены деления измерительного прибора, составления электрических цепей; ознакомить школьников с методом измерения силы тока, изучить принцип действия амперметра.
  • Развивающая: формировать интеллектуальные умения анализировать, сравнивать результаты экспериментов; активизировать мышление школьников, умение самостоятельно делать выводы, развивать речь; продолжить развитие умения работать с физическими приборами.
  • Воспитательная: развитие познавательного интереса к предмету, расширение кругозора учащихся

1. Организационный момент

Здравствуйте, ребята. Прежде чем начать урок, я хочу процитировать вам слова знаменитого поэта Персии

Науку все глубже постигнуть стремись,
Познанием вечного жаждой томись.
Лишь первых познаний блеснет тебе свет,
Узнаешь: предела для знания нет.
Фирдоуси, персидский поэт,
940-1030 гг.

2. Фронтальный опрос

  • Что такое электрический ток?
  • Какие условия необходимы для возникновения электрического ток?
  • Какие действия может оказывать электрический ток?
  • Какой физической величиной характеризуется действие электрического тока?
  • В каких единицах она измеряется?

3. Объяснение нового материала

Раз сил тока – физическая величина, то ее можно измерить. Значит, должен существовать прибор, позволяющий измерить силу тока. Сегодня на уроке мы познакомимся с прибором, который измеряет силу тока, узнаем, как правильно включать это прибор в цепь и научимся им пользоваться.

Давайте попробуем вместе выяснить, как данный прибор называется. (амперметр)

А теперь вместе сформулируем тему урока: Амперметр. Измерение силы тока в цепи.

Перед вами на столе находятся демонстрационный и лабораторный амперметры.

Принцип действия амперметра схож с ГАЛЬВАНОМЕТРОМ. Давайте вспомним, какое действие электрического тока положено в основу действия гальванометра. Совершенно верно – действие магнитного поля на рамку с током. Но гальванометр рассчитан на измерение очень малых токов – 0,00001 А и, при его включении, нет разницы в какую сторону течет ток. А вот амперметры могут измерять десятки и сотни ампер. Амперметр устроен так, что его включение практически не влияет на измеряемую величину. По его шкале, всегда можно определить, на какую наибольшую силу тока он рассчитан.

Можно ли включать амперметр в цепь с силой тока превышающей его максимальное значение? (Нет).

  • Включается амперметр в цепь последовательно с тем прибором, силу тока в котором измеряют.
  • Включение амперметра производится с помощью двух клемм, или двух зажимов:

(+) и (-). Посмотрите на амперметры на ваших столах. Клемму со знаком (+) нужно обязательно соединять с проводом, идущим от (+) полюса источника.

  • Беречь прибор от резких ударов и тряски, пыли.
  • На электрических схемах обозначается:

Прежде чем приступить к измерению силы тока, нужно определить цену деления амперметра. Вспомните, как определить цену деления прибора. берем два ближайших штриха, отмеченных числами, из большего числа вычитаем меньшее, и полученный результат делим на число штрихов между цифрами. Потренируемся определять цену деления и показания амперметра.

Давайте теперь попробуем измерить силу тока в цепи. Как вы думаете, куда именно нужно подключить амперметр, что бы измерить силу тока в лампочке?

Будут ли отличаться показания амперметра, если включить его до лампочки и после лампочки? На эти вопрос вы ответите сами после выполнения экспериментального задания. У вас на столах лежат приборы: Источник тока(батарейка), лампочка на подставке, ключ, два амперметра, соединительные провода. Соберите электрическую цепь по схеме, которая перед вами на экране. Не забудьте, что клемму со знаком (+) нужно обязательно соединять с проводом, идущим от (+) полюса источника.

Ученики выполняют работу: собирают цепь, измеряют силу тока, делают вывод.

Показания амперметра не зависят от места включения амперметра в цепь. Это видно из опыта, т.к. оба амперметра показывают одно и тоже.

Сила тока на всех участках электрической цепи карманного фонарика одинакова.

4. Рефлексия.

Что же нового вы узнали сегодня на уроке, чему научились?

Ученики: мы узнали, каким прибором можно измерить силу тока, как правильно включать его в цепь и измерили силу тока на лампочке карманного фонарика.

Теперь нам осталось провести небольшой тест, что бы выяснить, как вы усвоили новый материал .

(Тест выводится на экран и раздается ученика на парты. Ученики выполняют тест на отдельных листочках, которые в конце урока сдают учителю.)

Вариант № 1.

  • Гальвнометр
  • Гальванический элемент
  • Амперметр
  • электрометр
  1. Тепловое
  2. Химическое
  3. Механическое
  4. Магнитное

3. На рисунке 1 изображены схемы электрической цепи. Какой из амперметров включен в цепь правильно?

4. Определите цену деления амперметра

  1. 2 А
  2. 0,5 А
  3. 1 А
  4. 0,5 мА
  1. До звонка (по направлению электрического тока)
  2. После звонка
  3. Возле положительного полюса источника тока
  4. На любом участке электрической цепи

Вариант №2

  1. Измерения электрического заряда
  2. Измерения силы тока
  3. Обнаружения электрического заряда
Читайте так же:
Тепловой выключатель магнитной цепи

2. Силу тока в какой лампе показывает включенный в эту цепь амперметр?

  1. В №1
  2. В №2
  3. В №3
  4. В каждой из них

3. По показанию амперметра №2 сила тока в цепи равна 0,5мА. Какую силу тока зарегистрируют амперметры №1 и №3?

  1. №1 – меньше 0,5мА, №3 – больше 0,5 мА
  2. №1 – больше 0,5мА, №3 – меньше 0,5 мА
  3. №1 и №3, как и №2, — 0,5 мА

4. Определите цену деления амперметра:

  1. 0,5А
  2. 0,2А
  1. Рядом с тем потребителем тока, в котором надо измерить силу тока, соединяя его клемму, отмеченную “+”, с проводником, идущим от положительного полюса источника тока
  2. Последовательно с элементом цепи, где измеряется сила тока, следя за тем, чтобы его клемма, отмеченная знаком “+”, была соединена с положительным полюсом источника тока
  3. Последовательно с тем участком цепи, в котором измеряется сила тока, соединяя его клемму “+” с отрицательным полюсом источника тока
  4. Без каких либо правил.

Теперь давайте проверим, как вы ответили на вопросы теста

Ответы 1 вариантаОтветы 2 варианта
№ вопроса№ ответа№ вопроса№ ответа
1312
2424
3133
4244
5452

А теперь сами поставьте себе оценку.

5. Домашнее задание. Параграф 38, упр. 15 (3)

6. Постановка проблемы следующего урока.

У меня на доске собрана электрическая цепь, состоящая из источника тока, двух лампочек и ключа. Мы только что убедились, что при таком соединении сила тока в любом участке цепи одинакова, следовательно, тепловое действие тока одинаково. Но при замыкании цепи лампы горят по-разному. Почему это происходит, вы узнаете на следующем уроке.

Спасибо за урок. Мне было приятно с вами работать. Не забудьте при выходе из класса положить ко мне на стол листок с вашим тестом.

Амперметр. Виды. Работа. Применение. Особенности

Для проведения измерений, производится последовательное включение амперметра в электрическую цепь с тем участком, где необходимо измерить силу тока. Чтобы увеличить пределы измерений, производится включение амперметра через шунт или трансформатор.

Наиболее распространенной является схема амперметра, где движущаяся стрелка совершает поворот на такой угол наклона, который пропорционален величине измеряемой силы.

Амперметр



Типы амперметров

Исходя из вида отсчетного устройства амперметры делятся на приборы с:

  • со стрелочным указателем
  • со световым указателем;
  • с пишущим устройством;
  • электронные устройства.

По принципу действия амперметры разделяются

  1. Электромагнитные – предназначены для использования в цепях постоянного, переменного тока. Обычно используются в привычных электроустановках переменного тока с частотой 50 Гц.
  2. Магнитоэлектрические — предназначены для фиксации силы тока малых значений постоянного тока. Они имеют магнитоэлектрическое измерительное устройство и шкалу с проградуированными делениями.
  3. Термоэлектрические приборы предназначены для измерения силы тока в цепях высоких частот. В состав таких приборов входят магнитоэлектрический механизм, выполненный в виде проводника, к которому приваривается термопара.

Васильев Дмитрий Петрович

Васильев Дмитрий Петрович

Профессор электротехники СПбГПУ

Протекающий по проводку ток вызывает его нагрев, который фиксируется термопарой. Формирующееся излучение своим влиянием вызывает отклонение рамки на угол, который пропорционален силе тока.

Абрамян Евгений Павлович

Абрамян Евгений Павлович

Доцент кафедры электротехники СПбГПУ

Кроме того, цифровые приборы можно использовать в разнообразных условиях: он не боится тряски, вибрации и пр. воздействий.

Рассмотрим несколько амперметров разных производителей и разных типов:

Амперметры Ам-2 DigiTOP

  1. Количество входов 1
  2. Измеряемый переменный ток 1 …50 А
  3. Погрешность измерения 1%
  4. Дискретность индикации 0,1 А
  5. напряжение питания -100…-400 В, 50 (+1) Гц Габаритные размеры 90x51x64 мм

Орлов Анатолий Владимирович

Орлов Анатолий Владимирович

Начальник службы РЗиА Новгородских электрических сетей

Работоспособность и долговечность бытовой электротехники зависят от качества получаемой электроэнергии. Как правило, к выходу из строя электронной техники, будь то холодильники, телевизоры или стиральные машины, приводит повышение напряжения выше допустимых пределов. Наиболее опасно длительное повышение напряжения выше допустимой отметки. При этом выходят из строя блоки питания электронной техники, перегреваются обмотки электродвигателей, нередко происходит возгорание.

Амперметр лабораторный Э537

Данный прибор (амперметр Э537) предназначается для точного измерения силы тока в цепях переменного и постоянного тока.

Класс точности 0,5.

Диапазоны измерения 0,5 / 1 A;

Технические характеристики амперметра Э537
  1. Конечное значение диапазона измерений 0,5 А/1 А
  2. Класс точности 0,5
  3. Область нормальных частот (Гц) 45 — 100 Гц
  4. Область рабочих частот (Гц) 100 — 1500 Гц
  5. Габаритные размеры 140 х 195 х 105 мм

Амперметр СА3020

Цифровое устройство амперметр базовой модели выпускается в нескольких типовых модификациях в зависимости от базового значения параметров замеряемого тока. При заказе данной модели цифрового амперметра, требуется заявить, с каким базовым параметром силы тока Вам придётся работать: 1 А, 2 А или 5 А.

Базовые параметры замеряемого тока, Iн-1 Ампер (СА3020-1), 2 Ампер (СА3020-2) или 5 Ампер (СА3020-5);

  1. Границы замеряемых токов от 0,01 Iн до 1,5 Iн;
  2. Диапазон частот по замеряемым токам от 45 до 850 Герц;
  3. Границы базовой допускаемой существующей погрешности ±0,2% к оптимальному значению параметров замеряемой силы тока;
  4. Напряжение по питанию — сеть переменного тока напряжением (85-260) Вольт и частотой (47-65) Герц или постоянное напряжение (120 — 300) Вольт;
  5. Потребляемая устройством мощность не больше чем 4 ВА;
  6. Размерные габариты 144x72x190 мм;
  7. Масса не больше чем 0,55 кг;
  8. Мощность, потребляемая измерительной цепью амперметров серии 3020, не превышает: для СА3020-1 – 0,12 ВA; для СА3020-2 – 0,25 ВA; для СА3020-5 – 0,6 ВA.
Читайте так же:
Тепловые источники тока устройство

Виды амперметров

По своему действию все амперметры разделяются на электромагнитные, магнитоэлектрические, тепловые, электродинамические, детекторные, индукционные, фото- и термоэлектрические. Все они предназначены для измерения силы постоянного или переменного тока. Среди них, наиболее чувствительными и точными, являются электродинамические и магнитоэлектрические амперметры.

Во время работы магнитоэлектрического амперметра, создается крутящий момент, через взаимодействие между полем в постоянном магните и током, проходящим через обмотку рамки. С этой рамкой и соединяется стрелка, движущаяся по шкале. Поворот стрелки осуществляется на величину угла, пропорциональную силе тока.

амп4.jpg Стрелочные амперметры Цифровой амперметр

Приборы для измерения силы тока

Если в каком-либо проводнике течет ток, то он характеризуется такой величиной, как «сила тока». Сила тока в свою очередь характеризуется количеством электронов, которые проходят через поперечное сечение проводника за единицу времени. Но мы все учились в школе и знаем, что электронов в проводнике миллиарды миллиардов и считать количество электронов было бы бессмысленно.

Поэтому ученые вывернулись из этой ситуации и придумали единицу измерения силы тока и назвали ее «Ампер», в честь французского физика-математика Андре Мари Ампера. Что же собой представляет 1 Ампер?

Если сила тока в проводнике равна 1 амперу, то за одну секунду через поперечное сечение провода проходит заряд, равный 1 Кулону. Или простым языком, все электроны в сумме должны давать заряд в 1 Кулон и они должны в течение одной секунды пройти через поперечное сечение проводника.


Шкала амперметра

Если учесть, что заряд одного электрона 1.6х10-19 , то можно узнать, сколько электронов в 1 Кулоне. А вот для того, чтобы измерять амперы, ученые придумали прибор и назвали его «амперметром».

Амперметр – прибор для измерения силы тока в амперах. Шкалу амперметров градуируют в амперах, килоамперах, миллиамперах или микроамперах в соответствии с пределами измерения прибора. В электрическую цепь амперметр включается последовательно; для увеличения предела измерений – с шунтом или через трансформатор.

Амперметр – это прибор для измерения силы тока в электрической цепи. Любой амперметр рассчитан на измерение токов определенной величины. В электронике в основном оперируют микроАмперами (мкА), миллиАмперами (мА), а также Амперами (А). Следовательно, в зависимости от величины измеряемого тока приборы для измерения силы тока делятся на амперметры (PA1), миллиамперметры (PA2) и микроамперметры (PA3).


двойной вольметр-амперметр

Измерение значений переменного тока

Знать силу тока, проходящую через определенный участок цепи довольно важно. Это помогает рассчитать сечение кабеля и избежать перегрева токопроводящих жил. Эта статья поможет начинающим электрикам разобраться в нюансах работы и подключения измерительного прибора. Но сначала вспомним немного азов из школьной программы.

Как известно, амперметром называется измерительный прибор, позволяющий определить силу постоянного и переменного тока в электрической цепи. В зависимости от планируемой сферы применения, шкалу измерительного устройства градуируют в амперах, микро- или миллиамперах. Для измерений больших величин используется прибор, шкала которого разделена на килоамперы.

Схема цифрового амперметра

Сотые будут соответствовать четвертому дисплею, которого у нас нет, например «03», если мы ищем нуль сверху, ошибка будет больше, например «08». Повторение процесса три раза в лучшем случае должно быть идеальным.

Будет интересно➡ Что такое цифровой амперметр и чем он лучше обычного

Измерение тока и напряжения. Вольтметр и амперметр.

Приветствую всех читателей на нашем сайте и сегодня в рамках курса “Основы электроники” мы будем изучать основные способы измерения силы тока, напряжения и других параметров электрических цепей. Естественно, без внимания не останутся и основные измерительные приборы, такие как вольтметр и амперметр.

Как пользоваться амперметром

Имея дело с электротоком, следует предпринять все меры предосторожности для избежания травм вследствие короткого замыкания цепи. Для этого необходимо:

  • выполнять работу в сухих местах;
  • не допускать попадания влаги на электрическую цепь и электроприбор.

Важно! Перед выполнением работ следует ознакомиться со схемой электроснабжения, чтобы не допустить ошибок. Подключают в цепи постоянного тока плюс к положительному и минус отрицательному разъему устройства. Если схема с переменным током, то порядок подключения не имеет значения.

Подключение измерителя

Многие думают, что для измерения высоких токов нужно купить новый прибор или изменить конструкцию старого. Но ничего подобного, можно сделать из имеющегося устройство с необходимым диапазоном. Для этого применяют один из способов:

  • параллельно подключают шунт сопротивления;
  • включают электроприбор в цепь с применением трансформатора.

Амперметры – это модифицированные гальванометры. Они делятся по роду тока, принципу действия и классу точности. Принцип работы амперметра со стрелочным указателем заключается в отклонении стрелки линейной шкалы на величину, пропорциональную силе ампера. Для расширения своими руками диапазона измерения постоянного или переменного тока используйте трансформаторы или дополнительные шунты. В многопредельных ампервольтметрах, вольтметрах применяют более одного шунтирующего резистора.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector